Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+5x\right)+10\left(x^2-5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)-10\left(x^2+5x\right)+24=0\)
\(\Leftrightarrow\left(x^2+5x\right)\left(1-10\right)+14=0\)
\(\Leftrightarrow\left(-9\right)\left(x^2+5x\right)+14=0\)
\(\Leftrightarrow-9\left(x^2+5x\right)=-14\)
\(\Leftrightarrow x^2+5x=\frac{14}{9}\)
\(\Leftrightarrow x=0,2938.....\)
1) \((x-1)^2-9=0\)
\(⇔(x-1)^2-3^2=0\)
\(⇔(x-4)(x+2)=0\)
\(⇔\left[\begin{array}{} x-4=0\\ x+2=0 \end{array}\right.⇔\left[\begin{array}{} x=4\\ x=-2 \end{array}\right.\)
2) \((x-10)^2-125=x(x-15)-5\)
\(⇔x^2-20x+100-125=x^2-15x-5\)
\(⇔x^2-x^2-20x+15x=-5-100+125\)
\(⇔-5x=20⇔x=-4\)
\(3) (x+4)^2-4x=(x-3)(x+3)-11\)
\(⇔x^2+8x+16-4x=x^2-9-11\)
\(⇔x^2-x^2+8x-4x=-9-11-16\)
\(⇔4x=-36⇔x=-9\)
\(4)(2x-3)^2+12x=(4x-3)(x-2)-5\)
\(⇔4x^2-12x+9+12x=4x^2-11x+6-5\)
\(⇔4x^2-4x^2-12x+12x+11x=6-5-9\)
\(⇔11x=-8 ⇔x=-\dfrac{8}{11}\)
a) x.(1-x)+(x-1)2
=x.1-x2+x2-2.x2.1+12
=x-x2+x2-2.x2+1
=(-x2+x2-2x2)+1
=-2x2+1
b)(x+1)2-3.(x+1)
=x2+2.x2.1+12-3.x+3
=x2+2.x2+1-3x+3
=(x2+2x2)+(1+3)-3x
=3x2-3x+4
c)3x.(x-1)2-(1-x)3
=3x.x2-2,x2.1+12-13-3.12.x+3.x.12=3x.x2-2x2+1-1-3x+3x=(3x-3x+3x)(x2-2x2)(1-1)=3x.(-x2)
a) \(6x^n:x^2-6x^n+2x.3x^{n-1}+2x\)
\(=6x^{n-2}-6x^n+6x^{n-1+1}+2x\)
\(=6x^{n-2}+2x\)
b) \(6^6-4^3.3^6+4^3\)
\(=6^6-\left(2^2\right)^3.3^6+4^3\)
\(=6^6-2^6.3^6+4^3\)
\(=6^6-\left(2.3\right)^6+4^3=4^3\)
c) \(10-x-x^3-x^2+x+x^2+x^3\)
\(=10\)
a) x4 + 6x3 + 11x2 + 6x + 1 = 0 <=> ( x2 + 3x + 1 ) 2 = 0 <=> x2 + 3x + 1 = 0
|
Ta có: \(\left(x+1\right)^3-\left(x-1\right)^3-6\left(x-1\right)^2=-10\)
\(\Leftrightarrow x^3+3x^2+3x+1-x^3+3x^2-3x+1-6\left(x^2-2x+1\right)=-10\)
\(\Leftrightarrow6x^2+2-6x^2+12x-6=-10\)
\(\Leftrightarrow12x=-10+6-2=-6\)
hay \(x=-\dfrac{1}{2}\)
bạn ơi tại sao :
-6(x-1)2=-6(x2-2x+1)