
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


\(8^{13}-9.8^{12}+9.8^{11}-9.8^{10}+.....-9.8^2+9.8-2\)
\(=8^{13}-\left(8+1\right).8^{12}+\left(8+1\right).8^{11}-\left(8+1\right).8^{10}+....-\left(8+1\right).8^2+\left(8+1\right).8-2\)
\(=8^{13}-8^{13}-8^{12}+8^{12}+8^{11}-8^{11}-8^{10}+....-8^3-8^2+8^2+8-2\)
\(=\left(8^{13}-8^{13}\right)-\left(8^{12}-8^{12}\right)+\left(8^{11}-8^{11}\right)-....-\left(8^2-8^2\right)+8-2\)
\(=8-2=6\)

x=8 nên x+1=9
\(F=x^{13}-9x^{12}+9x^{11}-9x^{10}+...-9x^2+9x-2\)
\(=x^{13}-x^{12}\left(x+1\right)+x^{11}\left(x+1\right)-x^{10}\left(x+1\right)+...-x^2\left(x+1\right)+x\left(x+1\right)-2\)
\(=x^{13}-x^{13}-x^{12}+x^{12}+...-x^3-x^2+x^2+x-2\)
=x-2
=8-2
=6


\(đk:x\ge1\)
\(pt\Leftrightarrow3\sqrt{x-1}-\sqrt{x-1}+4\sqrt{x-1}=12\)
\(\Leftrightarrow6\sqrt{x-1}=12\Leftrightarrow\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\Leftrightarrow x=1+4=5\left(N\right)\)