K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 2 2019

\(\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+...+\left|x+99\right|=100x\)

\(\left|x+1\right|\ge0;\left|x+2\right|\ge0;...;\left|x+99\right|\ge0\)

\(\Rightarrow100x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+1+x+2+x+3+...+x+99=100x\)

\(\Rightarrow99x+1+2+3+...+99=100x\)

\(\Rightarrow99x+4950=100x\)

\(\Rightarrow-x=-4950\)

\(\Rightarrow x=4950\)

\(\left|x+\frac{1}{1\cdot2}\right|+\left|x+\frac{1}{2\cdot3}\right|+\left|x+\frac{1}{3\cdot4}\right|+...+\left|x+\frac{1}{49\cdot50}\right|=50x\)

\(\left|x+\frac{1}{1\cdot2}\right|\ge0;\left|x+\frac{1}{2\cdot3}\right|\ge0;...;\left|x+\frac{1}{49\cdot50}\right|\ge0\)

\(\Rightarrow50x\ge0\)

\(\Rightarrow x\ge0\)

\(\Rightarrow x+\frac{1}{1\cdot2}+x+\frac{1}{2\cdot3}+...+x+\frac{1}{49\cdot50}\)

\(\Rightarrow49x+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}=50x\)

\(\Rightarrow49x+\frac{49}{50}=50x\)

tu lam 

4 tháng 2 2019

\(a;\left|x+1\right|+\left|x+2\right|+\left|x+3\right|+..............+\left|x+99\right|=100x^{\left(1\right)}\)

Ta có \(\left|x+1\right|\ge0;\left|x+2\right|\ge0;\left|x+3\right|\ge0;.............;\left|x+99\right|\ge0\)

\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow100x\ge0\Rightarrow x\ge0\)

Với \(x\ge0\).Từ (1) \(\Rightarrow x+1+x+2+x+3+..................+x+99=100x\)

\(\Rightarrow\left(x+x+x+........+x\right)+\left(1+2+3+..........+99\right)=100x\)

\(\Rightarrow99x+4950=100x\)

\(\Rightarrow x=4950\)(t/m đk x > =  0)

\(\left|x+\frac{1}{1.2}\right|+\left|x+\frac{1}{2.3}\right|+.........+\left|x+\frac{1}{49.50}\right|=50x^{(∗)}\)

\(\left|x+\frac{1}{1.2}\right|\ge0;\left|x+\frac{1}{2.3}\right|\ge0;............;\left|x+\frac{1}{49.50}\right|\ge0\)

\(\Rightarrow VT\ge0\Rightarrow VP\ge0\Rightarrow50x\ge0\Rightarrow x\ge0\)

Với x > = 0 .Từ (*) \(\Rightarrow x+\frac{1}{1.2}+x+\frac{1}{2.3}+............+x+\frac{1}{49.50}=50x\)

\(\Rightarrow\left(x+x+x+.......+x\right)+\left(\frac{1}{1.2}+\frac{1}{2.3}+...........+\frac{1}{49.50}\right)=50x\)

\(\Rightarrow49x+\left(1-\frac{1}{50}\right)=50x\)

\(\Rightarrow49x+\frac{49}{50}=50x\)

\(\Rightarrow x=\frac{49}{50}\)(t/m đk \(x\ge0\))

24 tháng 8 2019

1/1.2+1/3.4+1/5.6+...+1/49.50

=1/1-1/2+1/3-1/4+...+1/49-1/50

=1/1+1/2+1/3+1/4+...+1/49+1/50-2(1/2+1/4+1/6+...+1/50)

=1/1+1/2+1/3+1/4+...+1/49+1/50-(1/1+1/2+1/3+1/4+...+1/25)

=1/26+1/27+...+1/50=1/26+1/27+...+1/50(đpcm)

b. 1/1-1/2+1/3-1/4+...+1/99-1/100=99/100

7/12=175/300; 5/6=10/12=250/300; 99/100=297/300

(hình như khúc này đề bài sai hả bạn) bạn tự tính ra nhé

bài 2: a.x+1/10+x/12+x/14+...x+1/20

(x+x+x...+x)+(1/10+1/12+...+1/20)

ko có kết quả sao tìm x được bạn:[

b.x+1/2000+x+2/1999=x+3/1998+x+4/1997

x+1/2000+x+2/1999=x+3/1998+x+4/1997

(x+1/2000+1)+(x+2/1999+1)=(x+3/1998+1)+(x+4/1997+1)

x+2002/2000+x+2002/1999=x+2002/1998+x+2002/1997

x+2002(1/2000+1/1999)=(x+2002)(1/1998+1/1997)

=>(1/2000+1/1999)=(1/1998+1/1997)

x+2002(1/2000+1/1999)-(x+2002)(1/1998+1/1997)=0

(x+2002)(1/2000+1/1999-1/1998-1/1997)=0

(x+2002).0=0

(x+2002)=0

x =0-2002=-2002

Chúc bạn học tốt.

25 tháng 8 2019

yeu

9 tháng 7 2016

Ta có: \(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x=\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\) (1)

Xét vế trái ta có:

\(\left(\frac{10}{1.2}+\frac{10}{2.3}+...+\frac{10}{49.50}\right)+2x\)

\(=10.\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{49.50}\right)\)

\(=10.\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{49}-\frac{1}{50}\right)+2x\)

\(=10.\left(1-\frac{1}{50}\right)+2x\)

\(=10.\frac{49}{50}+2x\)

\(=\frac{49}{5}+2x\) (2)

Xét vế phải ta có:

\(\frac{4}{1.3}+\frac{4}{3.5}+...+\frac{4}{47.49}-7x\)

\(=2.\left(\frac{2}{1.3}+\frac{2}{3.5}+...+\frac{2}{47.49}\right)-7x\)

\(=2.\left(1-\frac{1}{3}+\frac{1}{3}-\frac{1}{5}+...+\frac{1}{47}-\frac{1}{49}\right)-7x\)

\(=2.\left(1-\frac{1}{49}\right)-7x\)

\(=2.\frac{48}{49}-7x\)

\(=\frac{96}{49}-7x\) (3)

Từ (1), (2) và (3) => \(\frac{49}{5}+2x=\frac{96}{49}-7x\)

\(\Rightarrow2x+7x=\frac{96}{49}-\frac{49}{5}\)

\(\Rightarrow9x=\frac{480}{245}-\frac{2401}{245}\)

\(\Rightarrow9x=-\frac{1921}{245}\)

\(\Rightarrow x=-\frac{1921}{245}:9=-\frac{1921}{2205}\)

Vậy \(x=-\frac{1921}{2205}\)

Chúc bạn học tốt!vui

9 tháng 7 2016

Ta có:\(\left(10-\frac{10}{2}+\frac{10}{2}-\frac{10}{3}+...+\frac{10}{49}-\frac{10}{50}\right)+2x=\left(2-\frac{2}{3}+\frac{2}{3}-\frac{2}{5}+...+\frac{2}{47}-\frac{2}{49}\right)-7x\)

          \(\left(10-\frac{10}{50}\right)+2x=\left(2-\frac{2}{49}\right)-7x\)

           \(\frac{49}{5}+2x=\frac{96}{49}-7x\)

            \(7x+2x=\frac{96}{49}-\frac{49}{5}\)

            \(9x=-\frac{1921}{245}\)

            \(x=-\frac{1921}{245}:9\)

            \(x=-\frac{1921}{2205}\)

Vậy \(x=-\frac{1921}{2205}\)

\(\Leftrightarrow2x+10\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{49}-\dfrac{1}{50}\right)=2\left(\dfrac{2}{1\cdot3}+\dfrac{2}{3\cdot5}+...+\dfrac{2}{47\cdot49}\right)-7x\)

\(\Leftrightarrow2x+10\cdot\dfrac{49}{50}=2\left(1-\dfrac{1}{49}\right)-7x\)

\(\Leftrightarrow9x=-\dfrac{1921}{245}\)

hay x=-1921/2205

7 tháng 12 2015

1/1.2 + 1/2.3 + ...... + 1/49.50

= 1/1 - 1/2 + 1/2  - - .... - 1/50 = 1 - 1/50 = 49/50

23 tháng 10 2016

\(2\)

CMR

\(\frac{1}{1.2}+\frac{1}{3.4}+\frac{1}{5.6}+....+\frac{1}{49.50}=\frac{1}{26}+\frac{1}{27}+\frac{1}{28}+...+\frac{1}{50}\)

\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{49}-\frac{1}{50}\)

\(=\left(\frac{1}{1}+\frac{1}{3}+...+\frac{1}{49}\right)-\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\left(\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{49}+\frac{1}{50}\right)-2\left(\frac{1}{2}+\frac{1}{4}+...+\frac{1}{50}\right)\)

\(=\frac{1}{1}+\frac{1}{2}+\frac{1}{3}+....+\frac{1}{50}-1-\frac{1}{2}-\frac{1}{3}-...-\frac{1}{25}\)

\(=\frac{1}{26}+\frac{1}{27}+....+\frac{1}{50}\left(đpcm\right)\)

9 tháng 7 2019

Chứng minh 1/26 + 1/27 + 1/28 + ...+ 1/50 = 1- 1/2 + 1/3 - 1/4 + ...+ 1/49 - 1/50,Toán há»c Lá»p 6,bài tập Toán há»c Lá»p 6,giải bài tập Toán há»c Lá»p 6,Toán há»c,Lá»p 6

mình biết làm mỗi ý thứ 2 thôi.

22 tháng 2 2017

41650 tk m nhé

22 tháng 2 2017

Nhân cả 2 vế của S với 3 ta được :

3S = 3(1.2 + 2.3 + 3.4 + ..... + 49.50)

= 1.2.3 + 2.3.3 + 3.4.3 + ... + 49.50.3

= 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + .... + 49.50.(51 - 48)

= 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + .... + 49.50.51 - 48.59.50

= (1.2.3 - 1.2.3) + (2.3.4 - 2.3.4) + ......... + (48.49.50 - 48.49.50) + 49.50.51

= 49.50.51

=> S = 49.50.51/3 = 41650