![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a. 5x.(12x+7)-3x.(20x-5)=-150
x=-3
b. ( 2x-1).(3-x)+(x+4).(2x-5)=20
x=43/10
c. 9x2-1+(3x-1)2=0
x=1/3
d. 3x.(x-2)-(3x+2).(x-1)=7
x=-5/2
e. (2x-1)2-(2x+5).(2x-5)=20
x=3/2
f. 4x2-5=4
x=3/2
~~~~~~~~~~~ai đi ngang qua nhớ để lại k ~~~~~~~~~~~~~
~~~~~~~~~~~~ Chúc bạn sớm kiếm được nhiều điểm hỏi đáp ~~~~~~~~~~~~~~~~~~~
![](https://rs.olm.vn/images/avt/0.png?1311)
\(20\left(x-2\right)^2-5\left(x+1\right)^2+48\left(x-2\right)\left(x+1\right)=0\)
<=> \(63x^2-138x-21=0\)
<=> \(3\left(21x^2-46x-7\right)=0\)
<=> \(3\left(21x^2+3x-49x-7\right)=0\)
<=> \(3\left[3x\left(7x+1\right)-7\left(7x+1\right)\right]=0\)
<=> \(3\left(7x+1\right)\left(3x-7\right)=0\)
<=> \(\orbr{\begin{cases}7x+1=0\\3x-7=0\end{cases}}\)<=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=\frac{3}{7}\end{cases}}\)
<=> \(\orbr{\begin{cases}x=-\frac{1}{7}\\x=\frac{3}{7}\end{cases}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(a-1\right)^{10}=\left(a-1\right)^{20}\)
\(\Rightarrow\left(a-1\right)^{20}-\left(a-1\right)^{10}=0\)
\(\Rightarrow\left(a-1\right)^{10}\cdot\left[\left(a-1\right)^{10}-1\right]=0\)
\(\Rightarrow\hept{\begin{cases}\left(a-1\right)^{10}=0\\\left(a-1\right)^{10}-1=0\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a-1=0\\\left(a-1\right)^{10}=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=1\\a-1=1\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=1\\a=2\end{cases}}\)
a) Ta có:x-1=x-1
=>để \(\left(x-1\right)^{10}=\left(x-1\right)^{20}\)
thì x=1 hoặc x=2
vậy......
hc tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
\(\frac{1}{x-2}+3=3-\frac{x}{x-2}\)
<=> \(\frac{1}{x-2}=-\frac{x}{x-2}\)
<=> x = - 1
Vậy S = {- 1}
b)
\(\frac{x+5}{x-5}-\frac{x-5}{x+5}=\frac{20}{x^2-25}\)
<=> \(\frac{\left(x+5\right)^2}{\left(x-5\right)\left(x+5\right)}-\frac{\left(x-5\right)^2}{\left(x-5\right)\left(x+5\right)}=\frac{20}{\left(x-5\right)\left(x+5\right)}\)
<=> (x + 5)2 - (x - 5)2 = 20
<=> (x + 5 - x + 5)(x + 5 + x - 5) = 20
<=> 10 . 2x = 20
<=> x = 20 : 20
<=> x = 1
Vậy S = {1}
c)
\(\frac{x}{2\left(x-3\right)}+\frac{x}{2\left(x+1\right)}=\frac{2x}{2\left(x-3\right)\left(x+1\right)}\)
<=> \(\frac{x\left(x+1\right)}{2\left(x-3\right)\left(x+1\right)}+\frac{x\left(x-3\right)}{2\left(x-3\right)\left(x+1\right)}=\frac{2x}{2\left(x-3\right)\left(x+1\right)}\)
<=> x(x + 1) + x(x - 3) = 2x
<=> x2 + x + x2 - 3x - 2x = 0
<=> 2x2 - 4x = 0
<=> 2x(x - 2) = 0
<=> \(\left[\begin{matrix}x=0\\x-2=0\end{matrix}\right.\)
<=> \(\left[\begin{matrix}x=0\\x=2\end{matrix}\right.\)
Vậy S = {0; 2}
Bạn có sửa đề cũng phải báo chứ:
làm vậy có ai đó vào thấy đúng copy pas đến chỗ khác thành sai=> mất kiểm soát.
Tam sao thất bản mà.
Ngàn Sao thì ....
p/s: xem bài chứng tỏ bạn là đời f(0)
hiihi nói vui nhé xin đừng chém.
![](https://rs.olm.vn/images/avt/0.png?1311)
b) \(x^5+x+1=x^5-x^2+x^2+x+1=x^2\left(x^3-1\right)+x^2+x+1=x^2\left(x-1\right)\left(x^2+x+1\right)+x^2+x+1=\left(x^2+x+1\right)\left[x^2\left(x-1\right)+1\right]\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(\left(x+2\right)\left(x+3\right)\left(x+4\right)\left(x+5\right)-24\)
\(=\left(x+2\right)\left(x+5\right)\left(x+3\right)\left(x+4\right)-24\)
\(=\left(x^2+7x+10\right)\left(x^2+7x+12\right)-24\)
Đặt \(x^2+7x=t\)
\(\Rightarrow BT=\left(t+10\right)\left(t+12\right)-24\)
\(=t^2+22x+96=\left(t+11\right)^2-25\ge-25\)
Vậy GTNN của bt là - 25\(\Leftrightarrow x^2+7x+11=0\)
\(\Delta=7^2-4.11=5\)
\(\orbr{\begin{cases}x_1=\frac{-22+\sqrt{5}}{2}\\x_2=\frac{-22-\sqrt{5}}{2}\end{cases}}\)
2) \(\left(x-1\right)\left(x-3\right)\left(x-5\right)\left(x-7\right)-20\)
\(=\left(x-1\right)\left(x-7\right)\left(x-3\right)\left(x-5\right)-20\)
\(=\left(x^2-8x+7\right)\left(x^2-8x+15\right)-20\)
Đặt \(x^2-8x=t\)
\(\RightarrowĐT=\left(t+7\right)\left(t+15\right)-20\)
\(=t^2+22t+85=\left(t+11\right)^2-36\ge-36\)
Vậy GTNN của bt là - 36\(\Leftrightarrow x^2-8x+11=0\)
\(\Delta=\left(-8\right)^2-4.11=20\)
\(\orbr{\begin{cases}x_1=\frac{-22-\sqrt{20}}{2}\\x_2=\frac{-22+\sqrt{20}}{2}\end{cases}}\)
\(\frac{x+1}{20}=\frac{5}{x+1}\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)=20\times5\)
\(\left(x+1\right)^2=100\)
\(\Rightarrow\left(x+1\right)^2=10^2\text{ hoặc }\left(x+1\right)^2=\left(-10\right)^2\)
\(+)\left(x+1\right)^2=10^2\)
\(\Rightarrow x+1=10\)
\(x=9_{\left(1\right)}\)
\(+)\left(x+1\right)^2=\left(-10\right)^2\)
\(\Rightarrow x+1=\left(-10\right)\)
\(x=\left(-11\right)_{\left(2\right)}\)
Từ ( 1 ) và ( 2 )
\(\Rightarrow x=9;x=\left(-11\right)\)