Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x+1}{2010}+\frac{x+3}{2008}+\frac{x+4}{2007}+\frac{x+9}{2002}=-4\)
\(\Leftrightarrow\frac{x+1}{2010}+1+\frac{x+3}{2008}+1+\frac{x+4}{2007}+1+\frac{x+9}{2002}+1=-4+4\)
\(\Leftrightarrow\frac{x+2011}{2010}+\frac{x+2011}{2008}+\frac{x+2011}{2007}+\frac{x+2011}{2002}=0\)
\(\Leftrightarrow\left(x+2011\right)\left(\frac{1}{2010}+\frac{1}{2008}+\frac{1}{2007}+\frac{1}{2002}\right)=0\)
\(\Leftrightarrow x+2011=0\)
\(\Leftrightarrow x=-2011\)
\(\frac{x+1}{2010}+\frac{x+2}{2009}+\frac{x+3}{2008}=\frac{x+4}{2007}+\frac{x+5}{2006}+\frac{x+6}{2005}\)
<=> \(\frac{x+1}{2010}+1+\frac{x+2}{2009}+1+\frac{x+3}{2008}+1=\frac{x+4}{2007}+1+\frac{x+5}{2006}+1+\frac{x+6}{2005}+1\)
<=> \(\frac{x+2011}{2010}+\frac{x+2011}{2009}+\frac{x+2011}{2008}-\frac{x+2011}{2007}-\frac{x+2011}{2006}-\frac{x+2011}{2005}\) =0
<=> (x+2011).(\(\frac{1}{2010}+\frac{1}{2009}+\frac{1}{2008}-\frac{1}{2007}-\frac{1}{2006}-\frac{1}{2005}\) )=0
<=> x+2011=0
<=> x=-2011
Vậy pt có nghiệm là x=-2011
\(A=x^6-2007x^5+2007x^4-2007x^3+2007x^2-2007x+2007\)
\(=x^6-2006x^5-x^5+2006x^4+x^4-2006x^3-x^3+2006x^2+x^2-2006x-x+2006+1\)
\(=x^5\left(x-2006\right)-x^4\left(x-2006\right)+x^3\left(x-2006\right)-x^2\left(x-2006\right)+x\left(x-2006\right)-\left(x-2006\right)+1\)
\(=\left(x^5-x^4+x^3-x^2+x-1\right)\left(x-2006\right)+1\)
Thay x = 2006
\(\Leftrightarrow A=1\)
Vậy A = 1 tại x = 2006
\(A=x^6-2007.x^5+2007.x^4-2007.x^3+2007.x^2-2007.x+2007\)
\(=x^6-\left(x+1\right).x^5+\left(x+1\right).x^4-...+x+1\)
\(=x^6-x^6-x^5+x^5+x^4-x^4-...-x+1\)
\(=1\)
\(\frac{x+4}{2007}+\frac{x+8}{2003}=\frac{x+1}{2010}=\frac{x+3}{2008}\)
\(\Leftrightarrow\frac{x+4}{2007}=\frac{x+1}{2010}\)
\(\Leftrightarrow\left(x+4\right)2010=\left(x+1\right)2007\)
\(\Leftrightarrow2010x+8040=2007x+2007\)
\(\Leftrightarrow2010x-2007x=2007-8040\)
\(\Leftrightarrow3x=-6033\)
\(\Leftrightarrow x=-2011\)
\(\frac{x+4}{2007}+\frac{x+8}{2003}=\frac{x+1}{2010}+\frac{x+3}{2008}\)
=>\(\left(\frac{x\text{+4}}{2007}+1\right)+\left(\frac{x+8}{2003}+1\right)=\left(\frac{x+1}{2010}+1\right)+\left(\frac{x+3}{2008}+1\right)\)
=>\(\frac{x+2011}{2007}+\frac{x+2011}{2003}=\frac{x+2011}{2010}+\frac{x+2011}{2008}\)
=>\(\frac{x+2011}{2007}+\frac{x+2011}{2003}-\frac{x+2011}{2010}-\frac{x+2011}{2008}=0\)
=>\(x+2011\left(\frac{1}{2007}+\frac{1}{2003}-\frac{1}{2010}-\frac{1}{2008}\right)=0\)
Mà \(\frac{1}{2007}+\frac{1}{2003}-\frac{1}{2010}-\frac{1}{2008}\ne0\)
=> x+2011=0
=>x=-2011
Vậy x = -2011
Ta có :
\(\frac{x+1}{2012}+\frac{x+2}{2011}+\frac{x+3}{2010}=\frac{x+4}{2009}+\frac{x+5}{2008}+\frac{x+6}{2007}\)
\(\left(\frac{x+1}{2012}+1\right)+\left(\frac{x+2}{2011}+1\right)+\left(\frac{x+3}{2010}+1\right)=\left(\frac{x+4}{2009}+1\right)+\left(\frac{x+5}{2008}+1\right)+\left(\frac{x+6}{2007}+1\right)\)
\(\Leftrightarrow\)\(\frac{x+2013}{2012}+\frac{x+2013}{2011}+\frac{x+2013}{2010}=\frac{x+2013}{2009}+\frac{x+2013}{2008}+\frac{x+2013}{2007}\)
\(\Leftrightarrow\)\(\left(x+2013\right).\left(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}\right)=\left(x+2013\right).\left(\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\right)\)
\(\Leftrightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}=\frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(1\right)\)
Mà \(\frac{1}{2012}< \frac{1}{2009}\)\(;\)\(\frac{1}{2011}< \frac{1}{2008}\)\(;\)\(\frac{1}{2010}< \frac{1}{2007}\)
\(\Rightarrow\)\(\frac{1}{2012}+\frac{1}{2011}+\frac{1}{2010}< \frac{1}{2009}+\frac{1}{2008}+\frac{1}{2007}\)\(\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)suy ra không có giá trị nào của \(x\)thoả mãn đề bài
Vậy không có gía trị nào của \(x\)hay \(x\in\left\{\varnothing\right\}\)