Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: \(\left(x+y\right)^2-8\left(x+y\right)+12\)
\(=\left[\left(x+y\right)^2-8\left(x+y\right)+16\right]-4\)
\(=\left(x+y-4\right)^2-4\)
\(=\left(x+y\right)\left(x+y-8\right)\)
1)⇔x2+1x-3x+3=0
⇔x(x+1)-3(x+1)=0
⇔(x+1)(x-3)=0
⇔x+1=0 hoặc x-3=0
⇔x=-1 hoặc x=3
4)⇔x(1+5x)=0
⇔x=0 hoặc 1+5x=0
⇔x=0 hoặc 5x=-1
⇔x=0 hoặc x=-0.2
a: \(B=\left(\dfrac{x+1}{2\left(x-1\right)}+\dfrac{3}{\left(x-1\right)\left(x+1\right)}-\dfrac{x+3}{2\left(x+1\right)}\right)\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{x^2+2x+1+6-x^2-2x+3}{2\left(x+1\right)\left(x-1\right)}\cdot\dfrac{4\left(x-1\right)\left(x+1\right)}{5}\)
\(=\dfrac{10}{1}\cdot\dfrac{2}{5}=10\cdot\dfrac{2}{5}=4\)
b: \(\dfrac{x^2-36}{2x+10}\cdot\dfrac{3}{6-x}\)
\(=\dfrac{\left(x-6\right)\left(x+6\right)}{2\left(x+5\right)}\cdot\dfrac{-3}{x-6}\)
\(=\dfrac{-3\left(x+6\right)}{2\left(x+5\right)}\)
c: \(\dfrac{5x+10}{4x-8}\cdot\dfrac{4-2x}{x+2}\)
\(=\dfrac{5\left(x+2\right)}{4\left(x-2\right)}\cdot\dfrac{-2\left(x-2\right)}{x+2}=\dfrac{-10}{4}=\dfrac{-5}{2}\)
d: \(\dfrac{1-4x^2}{x^2+4x}:\dfrac{2-4x}{3x}\)
\(=\dfrac{1-4x^2}{x\left(x+4\right)}\cdot\dfrac{3x}{2\left(1-2x\right)}\)
\(=\dfrac{\left(1-2x\right)\left(1+2x\right)}{x+4}\cdot\dfrac{3}{2\left(1-2x\right)}=\dfrac{3\left(2x+1\right)}{x+4}\)
\(a,3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(3-x\right)\left(x+4\right)\)
\(a,3\left(x+4\right)-x^2-4x\)
\(=3\left(x+4\right)-\left(x^2+4x\right)\)
\(=3\left(x+4\right)-x\left(x+4\right)\)
\(=\left(3-x\right),\left(x+4\right)\)
\(a,VT=\left(a+b+c\right)\left(a-b+c\right)\)
\(=\left(a+c+b\right)\left(a+c-b\right)\)
\(=\left(a+c\right)^2-b^2\)
\(=a^2+2ac+c^2-b^2=VP\)
\(b,VT=\left(3x+2y\right)\left(3x-2y\right)-\left(4x-2y\right)\left(4x+2y\right)\)
\(=9x^2-4y^2-16x^2+4y^2=-7x^2=VP\)
\(c,VT=x^3-1-x^3-1=-2=VP\)
\(d,VT=8x^3+1-8x^3+1=2=VP\)
\(e,VT=\left(x^2+2xy+4y^2\right)\left(x-2y-2x+1\right)\)
\(=\left(x^2+2xy+4y^2\right)\left(-x-2y+1\right)\)
\(=-x^3-2x^2y+x^2-2x^2y-4xy^2+2xy-4xy^2-8y^3+4y^2\)
( bn kiểm tra lại đề nhé)
a. \(x^3+4x^2-31x-70=x^3+2x^2+2x^2+4x-35x-70=\left(x^3+2x^2\right)+\left(2x^2+4x\right)-\left(35x+70\right)=x^2\left(x+2\right)+2x\left(x+2\right)-35\left(x+2\right)=\left(x+2\right)\left(x^2+2x-35\right)=\left(x+2\right)\left(x^2+7x-5x-35\right)=\left(x+2\right)[\left(x^2+7x\right)-\left(5x+35\right)]=\left(x+2\right)\left[x\left(x+7\right)-5\left(x+7\right)\right]=\left(x+2\right)\left(x+7\right)\left(x-5\right)\)
b. \(y^2-y-12=y^2-4y+3y-12=\left(y^2+3y\right)-\left(4y+12\right)=y\left(y+3\right)-4\left(x+3\right)=\left(x+3\right)\left(y-4\right)\)
c. \(x^2-3x^2+4x-2=-2x^2+4x-2=-2\left(x^2-2x+1\right)=-2\left(x-1\right)^2\)
\(\left(x+1\right)^2=4x^2\)
\(\Rightarrow x^2+2x+1=4x^2\)
\(\Rightarrow x^2+2x+1-4x^2=0\)
\(\Rightarrow-3x^2-2x-1=0\)
\(\Rightarrow3x^2+x-3x-1=0\)
\(\Rightarrow\left(3x+1\right)\left(x-1\right)=0\)
\(\Rightarrow\orbr{\begin{cases}3x+1=0\\x-1=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=-1\\x=1\end{cases}\Rightarrow}\orbr{\begin{cases}x=-\frac{1}{3}\\x=1\end{cases}}}\)
Vậy \(x\in\left\{-\frac{1}{3};1\right\}\)
\(\left(x+1\right)^2=4x^2\)
\(\Rightarrow x+1=4x\)
\(x-4x=-1\)
\(-3x=-1\)
\(x=-1:\left(-3\right)\)
\(x=\frac{1}{3}\)
chúc bạn học tốt