![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,\(2x^2-8x=0\)
\(2x\left(x-4\right)=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}2x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
b,\(B\left(x\right)=\left(2x^2-8x\right)-\left(3x+2x^2\right)\)
\(=2x^2-8x-3x-2x^2\)
=\(-11x\)
c,\(-11x=0\)
\(\Rightarrow x=0\)
\(A\left(x\right)=2x^2-8x\)
\(\Rightarrow2x^2-8x=0\)
\(\Rightarrow x\left(2x-8\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x=8\Rightarrow x=4\end{matrix}\right.\)
\(B\left(x\right)=-3x+2x^2\)
\(B\left(x\right)=2x^2-3x\)
\(2x^2-3x=0\)
\(\Rightarrow x\left(2x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\2x=3\Rightarrow x=\dfrac{3}{2}\end{matrix}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{1}{x.\left(x+1\right)}+\frac{1}{\left(x+1\right)\left(x+2\right)}+\frac{1}{\left(x+2\right)\left(x+3\right)}-\frac{1}{x}=\frac{1}{2010}\).
\(\frac{1}{x}-\frac{1}{x+1}+\frac{1}{x+1}-\frac{1}{x+2}+\frac{1}{x+2}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x}=\frac{1}{2010}\)
\(=-\frac{1}{x+3}=\frac{1}{2010}\)
\(x=2010-\left(-3\right)=2013\)
![](https://rs.olm.vn/images/avt/0.png?1311)
1) \(M=\frac{x^2+y^2+7}{x^2+y^2+5}=1+\frac{2}{x^2+y^2+5}\)
Ta có: \(x^2+y^2\ge0,\forall x;y\)
=> \(x^2+y^2+5\ge5\) với mọi x; y
=> \(\frac{2}{x^2+y^2+5}\le\frac{2}{5}\)
=> \(M\le1+\frac{2}{5}=\frac{7}{5}\)
Dấu "=" xảy ra <=> x = y = 0
Vậy max M = 7/5 đạt tại x = y = 0
2) \(f\left(x-1\right)=x^2-3x+5=x^2-x-2x+2+3\)
\(=x\left(x-1\right)-2\left(x-1\right)+3=x\left(x-1\right)-\left(x-1\right)-\left(x-1\right)+3\)
\(=\left(x-1\right)\left(x-1\right)-\left(x-1\right)+3\)
=> \(f\left(x\right)=x.x-x+3=x^2-x+3\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x-1\right)^{x+2}=\left(x-1\right)^{x+4}\)
\(\Rightarrow\left(x-1\right)^{x+4}-\left(x-1\right)^{x+2}\)
\(=\left(x-1\right)^{x+2}.\left[\left(x-1\right)^2-1\right]=0\)
\(\Rightarrow\orbr{\begin{cases}\left(x-1\right)^{x+2}=0\\\left(x-1\right)^2-1=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x-1=0\\\left(x-1\right)^2=1\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=1\\x-1\in\left\{-1;1\right\}\end{cases}}\)
\(\Rightarrow x\in\left\{0;1;2\right\}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
I3.(x+1)I - I2(2+x)I + I 1-xI =4
I3x+3I - I4+2xI + I1+xI =4
Lập bảng xét dấu:
Đến đây bạn tự lmf nhé!
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\left(x+2\right)\times\left(2+x\right)=\frac{1}{2}-\frac{1}{3}\)
\(\left(x+2\right)\times\left(2+x\right)=\frac{1}{6}\)
\(\left(x+x\right)\times\left(2+2\right)=\frac{1}{6}\)
\(x\times2\times4=\frac{1}{6}\)
\(x\times2=\frac{1}{6}:4\)
\(x\times2=\frac{1}{24}\)
\(x=\frac{1}{24}:2\)
\(x=\frac{1}{48}\)
\(\left|x+1\right|+\left|x+2\right|=1\)
\(\Rightarrow\left|x+1+x+2\right|=1\)
\(\Rightarrow\left|2x+3\right|=1\)
\(\Rightarrow\orbr{\begin{cases}2x+3=1\\2x+3=-1\end{cases}\Rightarrow\orbr{\begin{cases}2x=-2\\2x=-4\end{cases}}\Rightarrow\orbr{\begin{cases}x=-1\\x=-2\end{cases}}}\)
Vậy \(x=-1;x=-2\)
Mình nghĩ vậy
Xét \(x< 1\)thì ta có : \(-x-1-x-2=1\)
\(< =>-2x=4< =>x=\frac{4}{-2}=-2\)
Xét \(1\le x< 2\)thì ta có : \(x+1-x-2=1\)
\(< =>-1=1\)(vô lí)
Xét \(x\ge2\)thì ta có : \(x+1+x+2=1\)
\(< =>2x=1-3=-2< =>x=-1\)
Vậy \(x=\left\{-1;-2\right\}\)