\(\dfrac{9}{25}\)|<0

tìm x,y thỏa mãn

giúp e vs ạ

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 1 2019

\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|< 0\)

Ta có: \(\left\{{}\begin{matrix}\left|x-y\right|\ge0\\\left|y+\dfrac{9}{25}\right|\ge0\end{matrix}\right.\)

\(\Rightarrow\left|x-y\right|+\left|y+\dfrac{9}{25}\right|\ge0\)

\(\left|x-y\right|+\left|y+\dfrac{9}{25}\right|< 0\)

\(\Rightarrow\) không tìm được các giá trị x;y thỏa mãn đề bài

Vậy không tìm được các giá trị x;y thỏa mãn đề bài

21 tháng 7 2020

By Titu's Lemma we easy have:

\(D=\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2\)

\(\ge\frac{\left(x+y+\frac{1}{x}+\frac{1}{y}\right)^2}{2}\)

\(\ge\frac{\left(x+y+\frac{4}{x+y}\right)^2}{2}\)

\(=\frac{17}{4}\)

21 tháng 7 2020

Mk xin b2 nha!

\(P=\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}+4xy\)

\(\ge\frac{\left(1+1\right)^2}{x^2+y^2+2xy}+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)

\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)

\(\ge\frac{4}{1^2}+2+\frac{1}{1^2}=4+2+1=7\)

Dấu "=" xảy ra khi: \(x=y=\frac{1}{2}\)

28 tháng 2 2020

a) Giả sử \(x+y\) là số nguyên tố

Ta có : \(x^3-y^3⋮x+y\)

\(\Leftrightarrow\left(x-y\right)\left(x^2+xy+y^2\right)⋮x+y\)

\(\Rightarrow x^2+xy+y^2⋮x+y\) ( Do \(x-y< x+y,\left(x-y,x+y\right)=1\) vì \(x+y\) là số nguyên tố )

\(\Rightarrow x^2⋮x+y\) ( Do \(xy+y^2=y\left(x+y\right)⋮x+y\) )

\(\Rightarrow x⋮x+y\) (1)

Mặt khác \(x< x+y,x+y\) là số nguyên tố

\(\Rightarrow x⋮̸x+y\) mâu thuẫn với (1)

Do đó, điều giả sử sai.

Vậy ta có điều phải chứng minh.

28 tháng 2 2020

Bạn thì nhanh nhờ

Del rep cho

4 tháng 12 2017

Ta có : x^2+y^2/xy=12/25

=>12(x^2+y^2)=25xy

=>12(x^2+2xy+y^2)=49xy

=>12(x+y)^2=49xy

=>(x+y)^2=49xy/12 (1)

Ta có : x^2+y^2/xy=12/25

=>12(x^2+y^2)=25xy

=>12(x^2-2xy+y^2)=xy

=>12(x-y)^2=xy

=>(x-y)^2=xy/12 (2)

Từ (1) và (2) suy ra :

(x-y)^2/(x+y)^2=1/49

Vì x<y<0 nên x-y/x=y=-1/7

Tick cho mik nhé thanghoa

AH
Akai Haruma
Giáo viên
25 tháng 11 2017

Lời giải:

Ta có \(\frac{x^2+y^2}{xy}=\frac{25}{12}\)

\(\Leftrightarrow 12(x^2+y^2)-25xy=0\)

\(\Leftrightarrow (3x-4y)(4x-3y)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-4y=0\\4x-3y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4y}{3}\left(1\right)\\x=\dfrac{3y}{4}\left(2\right)\end{matrix}\right.\)

Với (1):

\(A=\frac{x-y}{x+y}=\frac{\frac{4}{3}y-y}{\frac{4}{3}y+y}=\frac{\frac{1}{3}y}{\frac{7}{3}y}=\frac{1}{7}\)

Với (2)

\(A=\frac{x-y}{x+y}=\frac{\frac{3}{4}y-y}{\frac{3}{4}y+y}=\frac{\frac{-1}{4}y}{\frac{7}{4}y}=\frac{-1}{7}\)

Vậy

\(A=\pm \frac{1}{7}\)

1 tháng 12 2017

thank

21 tháng 1 2018

Ai lm giúp mk vs câu nào cũng được. Ai làm xong sớm nhất sẽ được tick

18 tháng 9 2017

\(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}=\sqrt{3}\)

\(\left(\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\right)^2=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+\dfrac{2}{xy}+\dfrac{2}{yz}+\dfrac{2}{xz}=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{1}{xy}+\dfrac{1}{yz}+\dfrac{1}{xz}\right)=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.\left(\dfrac{x+y+z}{xyz}\right)=3\)

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}+2.1=3\) ( Do x+y+z=xyz )

\(\dfrac{1}{x^2}+\dfrac{1}{y^2}+\dfrac{1}{z^2}=3-2=1\)

Vậy P = 1

11 tháng 9 2016

2/ \(\frac{1}{2}x2y5z3=\left(\frac{1}{2}.2.5.3\right)xyz\)\(=15xyz\)

\(\Rightarrow\frac{1}{2}x2y5z3\)có bậc là 3

3/ \(\frac{x}{4}=\frac{9}{x}\Leftrightarrow x^2=9.4\Rightarrow x^2=36\) mà \(x>0\Rightarrow x=6\)

4/ \(\left|2x-\frac{1}{2}\right|+\frac{3}{7}=\frac{38}{7}\Rightarrow\left|2x+\frac{1}{2}\right|=\frac{35}{7}=5\Rightarrow\hept{\begin{cases}2x+\frac{1}{2}=5\Rightarrow2x=\frac{9}{2}\Rightarrow x=\frac{9}{4}\\2x+\frac{1}{2}=-5\Rightarrow2x=\frac{-11}{2}\Rightarrow x=\frac{-11}{4}\end{cases}}\)