![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\left(x+y\right)^2+\left(x-y\right)^2+\left(x+y\right)\left(x-y\right)\)
\(=x^2+2xy+y^2+x^2-2xy+y^2+x^2-y^2\)
\(=3x^2+y^2\)
b)\(\left(3x+y\right)^2+\left(3x-y\right)^2-\left(2x+y\right)\left(2x-y\right)\)
\(=9x^2+6xy+y^2+9x^2-6xy+y^2-4x^2+y^2\)
\(=14x^2+3y^2\)
c) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2\)
\(=\left(x-y\right)^2+2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2\)
\(=\left(x-y+x+y\right)^2\)
\(=4x^2\)
d)\(-2\left(x^2-9y^2\right)+\left(x-3y\right)^2+\left(x+3y\right)^2\)
\(=\left(x+3y\right)^2-2\left(x+3y\right)\left(x-3y\right)+\left(x-3y\right)^2\)
\(=\left(x+3y-x+3y\right)^2=9y^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(x+2\right)^2-\left(x-2\right)^2-2\left(x-2\right)\left(x+2\right).\)
\(=\left(x+2-x+2\right)^2=4^2=16\)
\(b,\left(x-y\right)^2+\left(x+y\right)^2+2\left(x-y\right)\left(x+y\right)\)
\(=\left(x-y+x+y\right)^2=x^2\)
\(c,\left(x-y+z\right)^2-2\left(x+y\right)-2\left(x+y\right)\left(x-y\right)-z^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a,[x+y]^2.[x-y]^2=x4-2x2y2+y4
b,2.[x-y][x+y]+[x+y]^2+[x-y]^2=4x2
c,[x-y+z]^2+[z-y]^2+2.[x-y+z][y-z] (x - y + z)² + (z - y)² + 2(x - y + z)(y - z)
= (x - y + z)² + 2(x - y + z)(y - z) + (y - z)²
= (x - y + z + y - z)²
= x²
Câu c mk thấy khó nên viết luôn cách giải nha
a) \(\left(x+y\right)^2\cdot\left(x-y\right)^2=\left(x^2-y^2\right)^2\)
b) \(2\left(x-y\right)\left(x+y\right)+\left(x+y\right)^2+\left(x-y\right)^2=\left(x+y+x-y\right)^2=\left(2x\right)^2=4x^2\)
c) \(\left(x-y+z\right)^2+\left(z-y\right)^2+2\left(x-y+z\right)\left(y-z\right)=\left(x-y+z+y-z\right)^2=x^2\)
(Lấy y-z chứ không được lấy z-y)
![](https://rs.olm.vn/images/avt/0.png?1311)
thực hiện nhân đa thức với đa thức ở vế trái xog rút gọn là nó = vế pải
1/ Biến đổi vế trái , ta có :
(x-y)(x+y)= x2+xy - xy-y2= x2-y2
=> (x-y) (x+y) =x2-y2
2/ Biến đổi vế trái , ta có :
(x-y) (x2+xy+y2)= x3+x2y+xy2-x2y-xy2-y3
= (x2y-x2y)+(xy2-xy2)+x3-y3=x3-y3
=> (x-y) (x2+xy+y2) =x3-y3
3/ / Biến đổi vế trái , ta có :
(x+y) (x2-xy+y2) =x3-x2y+xy2+x2y-xy2+y3
(-x2y+x2y) + ( xy2-xy2) + x3+y3= x3+y3
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left(x+y\right)^2-y^2=\left(x+y-y\right)\left(x+y+y\right)\)
\(=x\left(x+2y\right)\)
b) \(\left(x^2+y^2\right)^2-\left(2xy\right)^2=\left(x^2-2xy+y^2\right)\left(x^2+2xy+y^2\right)\)
\(=\left(x-y\right)^2\cdot\left(x+y\right)^2\)
c) \(\left(x+y\right)^3=x^3+3x^2y+3xy^2+y^3\)
\(=\left(x^3-6x^2y+9xy^2\right)+\left(y^3-6xy^2+9x^2y\right)\)
\(=x\left(x-3y\right)^2+y\left(y-3x\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\left(x+y\right)^2+\left(x-y\right)^2+2\left(x+y\right)\left(x-y\right)\)
\(=x^2+2xy+y^2+x^2-2xy+y^2+2\left(x^2-y^2\right)\)
\(=2x^2+2x^2=4x^2\)
Vs x = 1/2 ; y = 3 ⇒ \(A=\frac{1}{4}.4=1\)
\(B=3x^2-6xy+y^2-2x^2-4xy-2y^2-x^2+y^2=-10xy=\frac{1}{2}.3.10=15\)
\(C=x^3+3x^2y+3xy^2+y^2-x^3+3x^2y-3xy^2+y^3-6x^2y-1=2y^2-1=18-1=17\)\(D=x^3+y^3-x^3-3x^2y-3xy^2-y^3=-3x^2y-3xy^2=\frac{1}{4}.9+\frac{1}{2}.27=\frac{9}{4}+\frac{108}{4}=\frac{117}{4}\)Check lại nhé <33 sợ sai lém
![](https://rs.olm.vn/images/avt/0.png?1311)
1) x2 + x - y2 + y = (x2 - y2) + (x + y) = (x - y)(x + y) + (x + y) = (x - y + 1)(x + y)
2) 4x2 - 9y2 + 4x - 6y = (4x2 - 9y2) + (4x - 6y) = (2x - 3y)(2x + 3y) + 2(2x - 3y) = (2x - 3y)(2x + 3y + 2)
3) x2 + x + y2 + y + 2xy = (x2 + 2xy + y2) + (x + y) = (x + y)2 + (x + y) = (x + y)(x + y + 1)
4) -x2 + 5x + 2xy - 5y - y2 = -(x2 - 2xy + y2) + (5x - 5y) = -(x - y)2 + 5(x - y) = (x - y)(y - x + 5)
5) x2 - y2 + 2x + 1 = (x2 + 2x + 1) - y2 = (x + 1)2 - y2 = (x + 1 + y)(x - y + 1)
6) x2 - 1 - y2 + 2y = x2 - (y2 - 2y + 1) = x2 - (y - 1)2 = (x - y + 1)(x + y - 1)
7) x2 + 2xz - y2 + 2uy + z2 - u2 =(x2 + 2xz + z2) - (y2 - 2uy + u2) = (x + z)2 - (y - u)2 = (x + z - y + u)(x + z + y - u)
8) x3 + 3x2y + x + 3xy2 + y + y3 = (x3 + 3x2y + 3xy2 + y3) + (x + y) = (x + y)3 + (x + y) = (x + y)(x2 + 2xy + y2 + 1)
9) x3 + y(1 - 3x2) + x(3y2 - 1) - y3 = x3 + y - 3x2y + 3xy2 - x - y3 = (x3 - 3x2y + 3xy2 - y3) - (x - y) = (x - y)3 - (x - y) = (x - y)(x2 - 2xy+y2-1)
\((x-y+2)^2\\=x^2+y^2+2^2-2xy-2\cdot y\cdot2+2\cdot x\cdot2\\=x^2+y^2+4-2xy-4y+4x\)