K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 10 2016

(x + y + z)^2 - x^2 - y^2 - z^2 = x^2 + y^2 + z^2 + 2(xy+yz+xz) - x^2 - y^2 - z^2 = 2(xy+yz+xz)

9 tháng 1 2017

câu này quá dễ

28 tháng 3 2017

\(\left(x+y+z\right)^2\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow2\left(x+y+z\right)\ge3\left(xy+yz+xz\right)\)

\(\Rightarrow x+y+z\ge\dfrac{3}{2}\left(xy+yz+xz\right)>xy+yz+xz\)(x,y,z>0)

Phân tích đa thức (x^2 + y^2 + z^2)(x + y + z)^2 + (xy + yz + zx)^2 thành nhân tử

phân tích đa thức thành nhân tử đặt biến phụ

(x2 + y2 + z2)(x + y + z)2 + (xy + yz + zx)2

 
 Theo dõi Vi phạm
 
 
 
 
 
 
 
 
 
 
VDO.AI

Trả lời (1)

 
 
 
  • Bùi Xuân Chiến

    (x+ y+ z2)(x + y + z)2 + (xy + yz +zx)2

    = (x+ y+ z2)(x+ y+ z+ 2xy +2yz +2zx) + (xy + yz + zx)2

    = (x+ y+ z2)(x2 + y2 + z2) + (x+ y2 + z2)(2xy + 2yz + 2zx) + (xy + yz +zx)2

    = (x+ y2 + z2)2 + 2(x+ y2 + z2)(xy + yz + zx) + (xy + yz + zx)2

    = (x2 + y2 + z+ xy + yz + zx)2

    Đảm bảo ko phân tích tiếp đc nữa đâu ^^, đây tuy ko phải cách đặt biến phụ nhưng cách này chắc ngắn hơn cách đặt biến phụ.

      bởi Bùi Xuân Chiến 1.png
19 tháng 7 2015

 

x+ y2 + z2 = xy + yz + zx 

=>2.(x2+y2+z2)=2.(xy+yz+zx)

<=>2x2+2y2+2z2=2xy+2yz+2zx

<=>2x2+2y2+2z2-2xy-2yz-2zx=0

<=>x2-2xy+y2+y2-2yz+z2+z2-2zx+x2=0

<=>(x-y)2+(y-z)2+(z-x)2=0

<=>x-y=0 và y-x=0 và z-x=0

<=>x=y và y=x và z=x

Vậy x=y=z

 

19 tháng 7 2015

Chứng minh phản chứng.