Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Thiếu đề
b) Áp dụng t/c của dãy tỉ số bằng nhau, ta có :
\(\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\) => \(\frac{4x}{4}=\frac{3y}{6}=\frac{2z}{6}=\frac{4x+3y+2z}{4+6+6}=\frac{14}{16}=\frac{7}{8}\)
=> \(\hept{\begin{cases}\frac{x}{1}=\frac{7}{8}\\\frac{y}{2}=\frac{7}{8}\\\frac{z}{3}=\frac{7}{8}\end{cases}}\) => \(\hept{\begin{cases}x=\frac{7}{8}.1=\frac{7}{8}\\y=\frac{7}{8}.2=\frac{7}{4}\\z=\frac{7}{8}.3=\frac{21}{8}\end{cases}}\)
Vậy ...
Sửa lại xíu :
\(a)\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}\)và \(x-2y+3z=14\)
\(b)\frac{x}{1}=\frac{y}{2}=\frac{z}{3}\)và \(4x+3y+2z=36\)
a) Ta có : \(\frac{x-1}{2}=\frac{y+3}{4}\Leftrightarrow\left(x-1\right).4=\left(y+3\right).2\Leftrightarrow4x-4=2y+6\Leftrightarrow4x-2y=10\Leftrightarrow x=\frac{10+2y}{4}\left(1\right)\)
\(\frac{y+3}{4}=\frac{z-5}{6}\Leftrightarrow\left(y+3\right).6=\left(z-5\right).4\Leftrightarrow6y+18=4z-20\Leftrightarrow6y-4z=-38\Rightarrow z=\frac{6y+38}{4}\left(2\right)\)Thay (1) và (2) vào biểu thức \(5x-3y-4z=20\); ta được :
\(\frac{5.\left(10+2y\right)}{4}-3y-\frac{4.\left(6y+38\right)}{4}=20\)
\(\Leftrightarrow50+10y-12y-24y-152=80\)
\(\Leftrightarrow-26y=182\Rightarrow y=-7\)
Với \(y=-7\Rightarrow x=\frac{10+2.-7}{4}=-1;z=\frac{6.-7+38}{4}=-1\)
Vậy ....
Ta có :
\(x:y:z=3:4:5\)
\(\Leftrightarrow\frac{x}{3}=\frac{y}{4}=\frac{z}{5}\)
Đặt : \(\frac{x}{3}=\frac{y}{4}=\frac{z}{5}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\\z=5k\end{matrix}\right.\)
Lại có : \(2x^2+2y^2-3z^2=100\)
\(\Leftrightarrow2.\left(3k\right)^2+2\left(4k\right)^2-3\left(5k\right)^2=100\)
\(\Leftrightarrow18k^2+32k^2-75k^2=100\)
\(\Leftrightarrow-25k^2=100\)
\(\Leftrightarrow k^2=-4\) (vô lí)
Vậy.....
Theo bài ra ta có :
\(\dfrac{x}{3}=\dfrac{y}{4}=\dfrac{z}{5}\Rightarrow\dfrac{2x^2}{18}=\dfrac{2y^2}{32}=\dfrac{3z^2}{75}=\dfrac{2x^2+2y^2+3z^2}{18+32+75}=\dfrac{-100}{125}=\dfrac{-4}{5}\)
Suy ra:
\(x=\dfrac{-4}{5}.3=\dfrac{-12}{5}\)
\(y=\dfrac{-4}{5}.4=\dfrac{-16}{5}\)
\(z=\dfrac{-4}{5}.5=-4\)