x y C A D B N M                              ...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2019
15 tháng 4 2017

Bài 1:

\(3^{-1}.3^n+4.3^n=13.3^5\)

\(\Rightarrow3^{n-1}+4.3.3^{n-1}=13.3^5\)

\(\Rightarrow3^{n-1}\left(1+4.3\right)=13.3^5\)

\(\Rightarrow3^{n-1}.13=13.3^5\)

\(\Rightarrow3^{n-1}=3^5\)

\(\Rightarrow n-1=5\)

\(\Rightarrow n=6\)

Vậy n = 6

Bài 2a: Câu hỏi của Nguyễn Trọng Phúc - Toán lớp 7 | Học trực tuyến

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Câu 1:
\(\frac{a^{2016}+b^{2016}}{c^{2016}+d^{2016}}=\frac{a^{2016}-b^{2016}}{c^{2016}-d^{2016}}\)

\(\Rightarrow (a^{2016}+b^{2016})(c^{2016}-d^{2016})=(a^{2016}-b^{2016})(c^{2016}+d^{2016})\)

\(\Leftrightarrow 2(bc)^{2016}=2(ad)^{2016}\Rightarrow (bc)^{2016}=(ad)^{2016}\)

\(\Rightarrow (\frac{a}{b})^{2016}=(\frac{c}{d})^{2016}\)

\(\Rightarrow \frac{a}{b}=\pm \frac{c}{d}\) (đpcm)

AH
Akai Haruma
Giáo viên
1 tháng 12 2018

Câu 2:

Nếu $a+b+c+d=0$ thì: \(\left\{\begin{matrix} a+b=-(c+d)\\ b+c=-(d+a)\\ c+d=-(a+b)\\ d+a=-(b+c)\end{matrix}\right.\)

\(\Rightarrow M=(-1)+(-1)+(-1)+(-1)=-4\)

Nếu $a+b+c+d\neq 0$

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{2a+b+c+d}{a}=\frac{a+2b+c+d}{b}=\frac{a+b+2c+d}{c}=\frac{a+b+c+2d}{d}=\frac{5(a+b+c+d)}{a+b+c+d}=5\)

\(\Rightarrow \left\{\begin{matrix} 2a+b+c+d=5a\\ a+2b+c+d=5b\\ a+b+2c+d=5c\\ a+b+c+2d=5d\end{matrix}\right.\) \(\Rightarrow \left\{\begin{matrix} b+c+d=3a(1)\\ a+c+d=3b(2)\\ a+b+d=3c(3)\\ a+b+c=3d(4)\end{matrix}\right.\)

Từ \((1);(2)\Rightarrow b+a+2(c+d)=3(a+b)\Rightarrow c+d=a+b\)

\(\Rightarrow \frac{a+b}{c+d}=1\)

Tương tự: \(\frac{b+c}{d+a}=\frac{c+d}{a+b}=\frac{d+a}{b+c}=1\)

\(\Rightarrow M=1+1+1+1=4\)

1 tháng 1 2020

c)

1 tháng 1 2020

cảm ơn bạnhihi

4 tháng 11 2019

\(\frac{a+c}{b+d}=\frac{2a-c}{2b-d}\)

Áp dụng .... ta có:

\(\frac{a+c}{b+d}=\frac{2a-c}{2b-d}=\frac{a+c+2a-c}{b+d+2b-d}=\frac{3a}{3b}=\frac{a}{b}\)  

Ta có \(\frac{a+c}{b+d}=\frac{2a-c}{2b-d}=\frac{a}{b}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\frac{a+c}{b+d}=\frac{2a-c}{2b-d}=\frac{a}{b}=\frac{a+c-2a+c+a}{b+d-2b+d+b}=\frac{2c}{2d}=\frac{c}{d}\)

Vậy \(\frac{a}{b}=\frac{c}{d}\)

1 tháng 1 2018

a) Ta có : \(\dfrac{a}{b}=\dfrac{c}{d}\)

=> ad = bc

Ta có : (a + 2c)(b + d)

= a(b + d) + 2c(b + d)

= ab + ad + 2cb + 2cd (1)

Ta có : (a + c)(b + 2d)

= a(b + 2d) + c(b + 2b)

= ab + a2d + cb + c2b

= ab + c2d + ad + c2b (Vì ad = cd) (2)

Từ (1),(2) => (a + 2c)(b + d) = (a + c)(b + 2d) (ĐPCM)

1 tháng 1 2018

Sửa đề bài : P = \(\dfrac{x+y}{z+t}+\dfrac{y+z}{t+x}+\dfrac{z+t}{x+y}+\dfrac{t+x}{y+z}\)

Ta có : \(\dfrac{x}{y+z+t}=\dfrac{y}{z+t+x}=\dfrac{z}{t+x+y}=\dfrac{t}{x+y+z}\)

=> \(\dfrac{y+z+t}{x}=\dfrac{z+t+x}{y}=\dfrac{t+x+y}{z}=\dfrac{x+y+z}{t}\)

=> \(\dfrac{y+z+t}{x}+1=\dfrac{z+t+x}{y}+1=\dfrac{t+x+y}{z}+1=\dfrac{x+y+z}{t}+1\)=> \(\dfrac{y+z+t+x}{x}=\dfrac{z+t+x+y}{y}=\dfrac{t+x+y+z}{z}=\dfrac{x+y+z+t}{t}\)TH1: x + y + z + t # 0

=> x = y = z = t

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}+\dfrac{x+x}{x+x}\)

P = 1 + 1 + 1 + 1 = 4

TH2 : x + y + z + t = 0

=> x + y = -(z + t)

y + z = -(t + x)

z + t = -(x + y)

t + x = -(y + z)

Ta có : P = \(\dfrac{x+y}{z+t}=\dfrac{y+z}{t+x}=\dfrac{z+t}{x+y}=\dfrac{t+x}{y+z}\)

P = \(\dfrac{-\left(z+t\right)}{z+t}=\dfrac{-\left(t+x\right)}{t+x}=\dfrac{-\left(x+y\right)}{x+y}=\dfrac{-\left(y+z\right)}{y+z}\)

P = (-1) + (-1) + (-1) + (-1)

P = -4

Vậy ...

13 tháng 4 2018

a)Ta có:\(\dfrac{a}{c}=\dfrac{c}{b}=\dfrac{b}{d}\)

\(\Leftrightarrow\dfrac{a^3}{c^3}=\dfrac{c^3}{b^3}=\dfrac{b^3}{d^3}=\dfrac{a}{c}\cdot\dfrac{c}{b}\cdot\dfrac{b}{d}=\dfrac{a}{d}\)(1)

Lại có:\(\dfrac{a^3}{c^3}=\dfrac{c^3}{b^3}=\dfrac{b^3}{d^3}=\dfrac{a^3+c^3-b^3}{c^3+b^3-d^3}\left(2\right)\)

Từ (1) và (2)=>đpcm

13 tháng 4 2018

làm nốt câu kia đi đạt

15 tháng 10 2017

Ta có:

\(b^2=ac\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}\left(1\right)\)

\(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\left(2\right)\)

Từ (1) và (2), suy ra: \(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b+c}{b+c+d}\)

\(\Rightarrow\left(\dfrac{a+b+c}{b+c+d}\right)^3=\dfrac{a}{b}.\dfrac{b}{c}.\dfrac{c}{d}=\dfrac{a}{d}\)

Vậy \(\dfrac{a}{d}=\left(\dfrac{a+b+c}{b+c+d}\right)^3\)(đpcm)

~ Học tốt!~

30 tháng 10 2017

Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\left(1\right)\\ \Rightarrow a=bk;c=dk\)

Ta có:

\(\dfrac{a+c}{b+d}=\dfrac{bk+dk}{b+d}=\dfrac{k\left(b+d\right)}{b+d}=k\left(2\right)\left(b+d\ne0\right)\\ \dfrac{a-c}{b-d}=\dfrac{bk-dk}{b-d}=\dfrac{k\left(b-d\right)}{b-d}=k\left(3\right)\left(b-d\ne0\right)\)

Từ \(\left(1\right);\left(2\right);\left(3\right)\Rightarrow\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\)

Vậy \(\dfrac{a}{b}=\dfrac{c}{d}=\dfrac{a+c}{b+d}=\dfrac{a-c}{b-d}\left(dpcm\right)\)

30 tháng 10 2017

Đặt :\(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\) Ta có :\(\dfrac{a+b}{c+d}=\dfrac{bk+b}{dk+d}=\dfrac{b.\left(k+1\right)}{d.\left(k+1\right)}=\dfrac{b}{d}\left(1\right)\) \(\dfrac{a-b}{c-d}=\dfrac{bk-b}{dk-d}=\dfrac{b.\left(k-1\right)}{d.\left(k-1\right)}=\dfrac{b}{d}\left(2\right)\) Từ (1) và (2) suy ra : \(\dfrac{a+b}{c+d}=\dfrac{a-b}{c-d}\) (đpcm)