\(\frac{a}{b}\), y =\(\frac{c}{d}\), z=
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 9 2018

\(x< z\Rightarrow\frac{a}{b}< \frac{a+c}{b+d}\Rightarrow ab+ad< ab+bc\Rightarrow ad< bc\Rightarrow\frac{a}{b}< \frac{c}{d}\)(đúng do x<y)

\(z< y\Rightarrow\frac{a+c}{b+d}< \frac{c}{d}\Rightarrow ad+cd< bc+cd\Rightarrow ad< bc\)(đúng do x<y)

Vậy x<z<y

20 tháng 10 2017

Vì \(x< y\Rightarrow\frac{a}{b}< \frac{c}{d}\Rightarrow ad< bc\) (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => \(\frac{a}{b}< \frac{a+c}{b+d}\) 

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => \(\frac{a+c}{b+d}< \frac{c}{d}\)  

                                          => z < y (2)

Từ (1) và (2) => x < z < y

7 tháng 11 2017

Vì x<y⇒ab <cd ⇒ad<bc (*)

Thêm ab vào hai vế của (*) : ad + ab < bc + ab

                                             => a(b+d) < b(a+c)

                                            => ab <a+cb+d  

                                            => x < z (1)

Thêm cd vào hai vế của (*): ad + cd < bc + cd

                                          => d(a + c) < c(b + d)

                                          => a+cb+d <cd   

                                          => z < y (2)

Từ (1) và (2) => x < z < y

18 tháng 5 2018

Sửa đề : \(z=\frac{a+c}{b+d}\)

Vì x < y 

=> \(\frac{a}{b}< \frac{c}{d}\)

<=> \(ad< bc\)

<=> \(ab+ad< bc+ba\)

<=>  \(a\left(b+d\right)< b\left(c+a\right)\)

<=> \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)

=> x < z < y 

18 tháng 5 2018

Để nguyên z vẫn giải được nha bạn :>  

14 tháng 6 2017

Vì \(\frac{a}{b}< \frac{c}{d}\)nên ad < bc            (1)

Xét tích a(b + d) = ab + ad             (2)

             b(a + c) = ba + bc             (3)

Từ (1);(2);(3) suy ra a(b + d) < b(a + c) => \(\frac{a}{b}< \frac{a+c}{b+d}\) (4)

Tương tự ta có \(\frac{a+c}{b+d}< \frac{c}{d}\)                                        (5)

Từ (4);(5) suy ra \(\frac{a}{b}< \frac{a+c}{b+d}< \frac{c}{d}\)hay x < z < y

15 tháng 8 2018

Ta có :  x < y mà  \(x=\frac{a}{m}\)và   \(y=\frac{b}{m}\)

\(\Rightarrow a< b\)

a<b \(\Rightarrow a+a< b+a\)

\(\text{Hay}\)\(2a< b+a\)

\(\Rightarrow\frac{a+b}{2m}>\frac{2a}{2m}\)

\(\Rightarrow z>x\)( 1)

a < b \(\Rightarrow a+b< b+b\)

Hay \(a+b< 2b\)

\(\Rightarrow\frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow z< y\)(2)

Từ (1) và (2) suy ra : x < z < y (đpcm)

15 tháng 8 2018

\(x< y\Rightarrow\frac{a}{m}< \frac{b}{m}\Rightarrow a< b\)

\(\Rightarrow\frac{a}{2m}+\frac{a}{2m}< \frac{a}{2m}+\frac{b}{2m}< \frac{b}{2m}+\frac{b}{2m}\)

\(\Rightarrow\frac{2a}{2m}< \frac{a+b}{2m}< \frac{2b}{2m}\)

\(\Rightarrow\frac{a}{m}< \frac{a+b}{2m}< \frac{b}{m}\)

\(\Rightarrow x< z< y\)

14 tháng 8 2017

Theo đề bài ta có x = amam, y = bmbm (  a, b, m ∈ Z, m > 0)

Vì x < y nên ta suy ra a< b

Ta có : x = 2a2m2a2m, y = 2b2m2b2m; z = a+b2ma+b2m

Vì a < b => a + a < a +b => 2a < a + b

Do 2a< a +b nên x < z (1)

Vì a < b => a + b < b + b => a + b < 2b

Do a+b < 2b nên z < y   (2)

Từ (1) và (2) ta suy ra x < z< y

14 tháng 8 2017

\(\frac{a+b}{2m}=\left(\frac{a}{m}+\frac{b}{m}\right):2\)

=> z là trung bình cộng của x và y.

Mà x<y => x<z<y

26 tháng 8 2016

Theo đầu bài ta có:
\(\hept{\begin{cases}x=\frac{a}{m}\\y=\frac{b}{m}\end{cases}}\Rightarrow\hept{\begin{cases}a=x\cdot m\\b=y\cdot m\end{cases}}\)
Từ đó suy ra:
\(z=\frac{a+b}{2m}\)
\(\Leftrightarrow z=\frac{x\cdot m+y\cdot m}{2m}\)
\(\Leftrightarrow z=\frac{m\left(x+y\right)}{2m}\)
\(\Leftrightarrow z=\frac{x+y}{2}\)
- Do \(x=\frac{2x}{2}=\frac{x+x}{2}< \frac{x+y}{2}=z\Rightarrow x< z\)
- Mà \(z=\frac{x+y}{2}< \frac{y+y}{2}=\frac{2y}{2}=y\Rightarrow z< y\)
Dùng tính chất bắc cầu, suy ra: \(x< z< y\) ( đpcm )