K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2019

nguyenbuikimtrang

Đề bạn ghi rõ ra được không ! Mình không hiểu !

        

20 tháng 6 2016

Câu 1

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)

=>x=2.3=6

    y=2.5=10

Vậy x=6 và y=10

Câu 2: 

x:2=y:(-5)    <=>  \(\frac{x}{2}=\frac{y}{-5}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta có:

\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{2+5}=\frac{-7}{7}=-1\)

=>x=(-1).2=-2

    y=(-1).(-5)=5

Vậy x=-2 và y=5

20 tháng 6 2016

áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{3}=\frac{y}{5}\)

\(=\frac{x+y}{3+5}\)

thay x+y=16 vào được

\(\frac{x}{3}=\frac{y}{5}\)

\(=\frac{x+y}{3+5}\)

=\(\frac{16}{8}\)

=2

=>x=2.3=6

y=2.5=10

áp dụng tính chất dãy tỉ số bằng nhau

b.\(\frac{x}{2}=\frac{y}{-5}\)

\(=\frac{x-y}{2-\left(-5\right)}\)

\(thayx-y=-7\)

\(\frac{x}{2}=\frac{y}{-5}\)

\(=\frac{x-y}{2-\left(-5\right)}\)

\(=\frac{-7}{7}\)

\(=-1\)

\(=>x=\left(-1\right).2=\left(-2\right)\)

\(y=\left(-1\right).\left(-5\right)=5\)

20 tháng 6 2019

Ta có: a, b là các số tự nhiên không chia hết cho 5

=> Chữ số cuối cùng các số a, b  có thể là 1, 2, 3, 4, 6, 7, 8,9

 mà 1^4=1, 2^4=16, 3^4 =81, 4^4=256, 6^41296,...

=> Như vậy chữ số tận cùng các sô a^4 và b^4 là 1 hoặc 6

=> Chữ số tận cùng các số a^4m, b^4m là 1 hoặc 6

=> Chữ số tận cùng các số a^4m -1  và b^4m -1 là 0 hoặc 5 

=> \(\hept{\begin{cases}a^{4m}-1⋮5\\b^{4m}-1⋮5\end{cases}\Rightarrow}\hept{\begin{cases}x\left(a^{4m}-1\right)⋮5\\y\left(b^{4m}-1\right)⋮5\end{cases}}\)

=> \(x\left(a^{4m}-1\right)+y\left(b^{4m}-1\right)⋮5\Rightarrow xa^{4m}+yb^{4m}+\left(x+y\right)⋮5\Rightarrow xa^{4m}+yb^{4m}⋮5\)vì x+y chia hết cho 5

20 tháng 6 2019

Hoặc nếu em đã được học kiến thức đồng dư:

a, b là các số không chia hết cho 5

=> a^4 , b^4 có chữ số tận cùng là 1, 6 

=> a^4m, b^4m có chữ số tận cùng 1, 6

=> \(\hept{\begin{cases}a^{4m}\equiv1\left(mod5\right)\\b^{4m}\equiv1\left(mod5\right)\end{cases}\Leftrightarrow}\hept{\begin{cases}x.a^{4m}\equiv x\left(mod5\right)\\y.b^{4m}\equiv y\left(mod5\right)\end{cases}\Rightarrow x.a^{4m}+y.b^{4m}\equiv x+y\equiv}0\left(mod5\right)\)

28 tháng 3 2016

A-B=3x(x-y)-(y2-x2)

=3x(x-y)-(y2+xy-xy-x2)

=3x(x-y)-[y(y+x)-x(y+x)]

=3x(x-y)+(x-y)(x+y)

=(x-y)(3x+y) luôn chia hết cho 7

8 tháng 9 2021

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=-\dfrac{21}{7}=-3\)

⇒ x = - 6 và y = 15

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{2}=\dfrac{y}{-5}=\dfrac{x-y}{2-\left(-5\right)}=\dfrac{21}{7}=3\)

Do đó:x=6; y=-15

24 tháng 7 2018

các bạn giải nhanh nhanh giúp tớ nha chiều nay tớ đi học rồi

24 tháng 7 2018

\(\frac{x}{y}=\frac{20}{3}\Rightarrow x=\frac{20y}{3}\) \(\Rightarrow xy=\frac{20y}{3}.y=\frac{27}{5}\Leftrightarrow y^2=\frac{27}{5}.\frac{3}{20}=\frac{81}{100}\)

\(\Rightarrow y=\frac{9}{10}\)hoặc \(y=-\frac{9}{10}\)

Với \(y=\frac{9}{10}\Rightarrow x=\frac{27}{5}.\frac{10}{9}=\frac{270}{45}=6\)

Với \(y=-\frac{9}{10}\Rightarrow x=\frac{27}{5}.\frac{-10}{9}=-6\)

Vậy \(\left(x;y\right)\in\left\{\left(6;\frac{9}{10}\right);\left(-6;-\frac{9}{10}\right)\right\}.\)

9 tháng 10 2021

\(\dfrac{x}{-3}=\dfrac{y}{5}=\dfrac{x-y}{-3-5}=\dfrac{-16}{-8}=2\)

\(\dfrac{x}{-3}=2\rightarrow x=-6\\ \dfrac{y}{5}=2\rightarrow y=10\)

Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{x}{-3}=\dfrac{y}{5}=\dfrac{x-y}{-3-5}=\dfrac{-16}{-8}=2\)

Do đó: x=-6; y=10