K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 5 2020

ĐK: \(\hept{\begin{cases}x\ge2\\y\ge-\frac{1}{3}\end{cases}}\)

\(\sqrt{x-2}+x^3-6x^2+12x=\sqrt{3y+1}+27y^3+27y^2+9y+9\)

<=> \(\sqrt{x-2}+x^3-6x^2+12x-8=\sqrt{3y+1}+27y^3+27y^2+9y+1\)

<=> \(\sqrt{x-2}+\left(x-2\right)^3=\sqrt{3y+1}+\left(3y+1\right)^3\)

<=> \(\left(\sqrt{x-2}-\sqrt{3y+1}\right)+\left[\left(x-2\right)^3-\left(3y+1\right)^3\right]=0\)

<=> \(\frac{x-3y-3}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-3y-3\right)\left[\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right]=0\)

<=> \(\left(x-3y-3\right)\left(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2\right)=0\)

<=> \(x-3y-3=0\)

vì \(\frac{1}{\sqrt{x-2}+\sqrt{3y+1}}+\left(x-2\right)^2+\left(x-2\right)\left(3y+1\right)+\left(3y+1\right)^2>0\)

<=> x = 3y + 3

Thế vào phương trình trên ta có: 

\(2+2\left(3y+3\right)^2-2y^2+3\left(3y+3\right)y-4\left(3y+3\right)-3y=0\)

<=> \(25y^2+30y+8=0\Leftrightarrow\orbr{\begin{cases}y=-\frac{2}{5}\\y=-\frac{4}{5}\end{cases}}\)không thỏa mãn đk 

Vậy hệ vô nghiệm.

9 tháng 3 2018

help me!

10 tháng 3 2018

nếu nó dẫn đến pt này, bạn làm được ko:

\(9y^2+14+6xy-27y-6x=0\)

** tớ ko biết làm, ko rút thế được vì nếu rút x ra, sau đó quy đồng lên sẽ thành pt bậc 5**

11 tháng 10 2020

Hệ pt \(\Leftrightarrow\hept{\begin{cases}x^2+3y=3x-3xy\left(1\right)\\\left(x^2+3y\right)^2+3x^2y-5x^2=0\left(2\right)\end{cases}}\)

Thay (1) vào (2) ta được: \(x^2\left(9y^2-15y+4\right)=0\Leftrightarrow\hept{\begin{cases}x=0\Rightarrow y=0\\y=\frac{1}{3}\Rightarrow x=1\\y=\frac{4}{3}\Rightarrow x^2+x+4=0\left(VN\right)\end{cases}}\)

11 tháng 10 2020

CÁM ƠN BẠN NHIỀU, NHƯNG MÌNH LÀM ĐƯỢC BÀI NÀY RỒI, CÁM ƠN VÀ XIN LỖI BẠN !

28 tháng 6 2023

a) \(x^2-3xy+3y^2=3y\)

Rõ ràng \(x⋮y\) nên đặt \(x=ky\left(k\inℤ\right)\). Pt trở thành:

\(k^2y^2-3ky^2+3y^2=3y\)

\(\Leftrightarrow\left[{}\begin{matrix}y=0\\k^2y-3ky+3y=3\end{matrix}\right.\).

Khi \(y=0\) \(\Rightarrow x=0\).

Khi \(k^2y-3ky+3y=3\)

\(\Leftrightarrow y\left(k^2-3k+3\right)=3\)

Ta lập bảng giá trị:

\(y\) 1 3 -1 -3
\(k^2-3k+3\) 3 1 -3 -1
\(k\) 0 hoặc 3 1 hoặc 2 vô nghiệm vô nghiệm
\(x\) 0 (loại) hoặc 3 (nhận) 3 (nhận) hoặc 6 (nhận)    

Vậy pt đã cho có các nghiệm \(\left(0;0\right);\left(3;1\right);\left(3;3\right);\left(6;3\right)\)

b) \(x^2-2xy+5y^2=y+1\)

\(\Leftrightarrow x^2-2yx+5y^2-y-1=0\)

\(\Delta'=\left(-y\right)^2-\left(5y^2-y-1\right)\) \(=-4y^2+y+1\)

Để pt đã cho có nghiệm thì \(-4y^2+y+1\ge0\), giải bpt thu được \(\dfrac{1-\sqrt{17}}{8}\le y\le\dfrac{1+\sqrt{17}}{8}\). Mà lại có \(-1< \dfrac{1-\sqrt{17}}{8}< 0< \dfrac{1+\sqrt{17}}{8}< 1\) nên suy ra \(y=0\). Từ đó tìm được \(x=\pm1\). Vậy pt đã cho có các nghiệm \(\left(1;0\right);\left(-1;0\right)\)

NV
19 tháng 1 2024

\(\Leftrightarrow4x^2-12xy+12y^2=12y\)

\(\Leftrightarrow\left(2x-3y\right)^2=12y-3y^2\)

Do \(\left(2x-3y\right)^2\ge0;\forall x;y\Rightarrow12y-3y^2\ge0\)

\(\Rightarrow y^2-4y+4\le4\)

\(\Rightarrow\left(y-2\right)^2\le4\)

\(\Rightarrow\left[{}\begin{matrix}\left(y-2\right)^2=0\\\left(y-2\right)^2=1\\\left(y-2\right)^2=4\end{matrix}\right.\)  \(\Rightarrow y=\left\{0;1;2;3;4\right\}\)

Lần lượt thế vào pt ban đầu ta được các cặp nghiệm:

\(\left(x;y\right)=\left(0;0\right);\left(0;1\right);\left(3;1\right);\left(3;3\right);\left(6;3\right);\left(6;4\right)\)

NV
12 tháng 7 2020

Thế -1 từ pt dưới lên trên:

\(2x^3-9y^3=\left(x-y\right)\left(4xy+x^2-3xy+y^2\right)\)

\(\Leftrightarrow2x^3-9y^3=\left(x-y\right)\left(x^2+y^2+xy\right)\)

\(\Leftrightarrow2x^3-9y^3=x^3-y^3\)

\(\Leftrightarrow x^3=8y^3\Rightarrow x=2y\)

Thế xuống dưới:

\(4y^2-6y^2+y^2=-1\Rightarrow y^2=1\Rightarrow...\)