
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=\pm\sqrt{\frac12}\end{array}\right.\)
Vậy \(x\) ∈ {- \(\sqrt{\frac12}\); 0; \(\sqrt{\frac12}\)}

Giải:
\(x-5\sqrt{x}\) = 0 (\(x\) ≥ 0)
\(\sqrt{x}\) .(\(\sqrt{x}\) - 5) = 0
\(\left[\begin{array}{l}\sqrt{x}=0\\ \sqrt{x}-5=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ \sqrt{x}=5\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=25\end{array}\right.\)
Vậy \(x\in\) {0; 25}
\(x^5\) = 2\(x^7\)
\(x^5\) - 2\(x^7\) = 0
\(x^5\).(1 - 2\(x^2\)) = 0
\(\left[\begin{array}{l}x^5=0\\ 1-2x^2=0\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ 2x^2=1\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x^2=\frac12\end{array}\right.\)
\(\left[\begin{array}{l}x=0\\ x=-\frac{1}{\sqrt2}\\ x=\frac{1}{\sqrt2}\end{array}\right.\)
Vậy \(x\) \(\in\) {- \(\frac{1}{\sqrt2}\); 0; \(\frac{1}{\sqrt2}\)}

b1:Vì y tỉ lệ nghịch với x nên \(\frac{x_2}{y_1}=\frac{x_1}{y_2}->\frac{7x_2}{7y_1}=\frac{8x_1}{8y_2}=\frac{7\cdot5-8\cdot6}{7y_1-8y_2}=\frac{-13}{\frac{1}{3}}=-39\)
rồi từ đây chắc c lm đc r
b2: câu này thiếu z ở phần đầu
hôm n mk mệt, có j mai thắc mắc hỏi mk
\(\frac{x-5}{2}=\frac{y-3}{7}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x-5}{2}=\frac{y-3}{7}=\frac{x-5+y-3}{2+7}=\frac{11-8}{9}=\frac{1}{3}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{1}{3}.2+5=\frac{17}{3}\\y=\frac{1}{3}.7+3=\frac{16}{3}\end{cases}}\)