K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

6 tháng 3 2020

ziết như câu hỏi

=> (x-4)(1+3x+1)=0

=.(x+4)(3x+2)=0

=>\(\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}=>\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}}\)

6 tháng 3 2020

\(\left(x-4\right)+\left(x-4\right).\left(3x+1\right)=0\)

\(\Leftrightarrow\left(x-4\right)\left(1+3x+1\right)=0\)

\(\Leftrightarrow\left(x+4\right)\left(3x+2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-4=0\\3x+2=0\end{cases}}\) 

\(\Leftrightarrow\orbr{\begin{cases}x=4\\x=\frac{2}{3}\end{cases}}\)

Vậy x = 4 hoặc x = 2/3

8 tháng 4 2020

2(x+4)(x-3)=0

=> (x+4)(x-3)=0

TH1: x+4=0 => x=-4

TH2: x-3=0=> x=3

vậy pt có nghiệm là ; -4;3

b) (x-1)2(3x-1)=0

TH1: x-1=0 => x=1

TH2:3x-1=0=>3x=1=>x=1/3

vậy pt có nghiệm là: 1;1/3

c) (2x/3 + 4)(2x-3) (x/2-1)=0

=> TH1:  2x/3  +4=0 => 2x/3 =-4 => 2x=-12 => x=-6

TH2: 2x-3=0 => 2x=3=>x=3/2

TH3:x/2 -1 =0 => x/2=1 => x=2

vậy pt có nghiệm là : -6;3/2;2

8 tháng 4 2020

a, 2(x+4)(x-3)=0

 (x+4)(x+3)=0

x+4=0 hoặc x+3=0

x=-4 hoặc x=-3

b,(x-1)^2(3x-1)=0

x-1=0 hoặc 3x-1=0

x=1 hoặc x=1/3

c,(2x/3+4)(2x-3)(x/2-1)=0

2x/3+4=0 hoặc 2x-3=0 hoặc x/2-1=0

x=6 hoặc x=3/2 hoặc x=2

6 tháng 3 2020

a) 6x2 - 5x + 3 = 2x - 3x(2 - x)

<=> 6x2 - 5x + 3 = 2x - 6x + 3x2

<=> 6x2 - 5x + 3 = -4x + 3x2

<=> 6x2 - 5x + 3 + 4x - 3x2 = 0

<=> 3x2 - x + 3 = 0

=> Pt vô nghiệm

b) 25x2 - 9 = (5x + 3)(2x + 1)

<=> 25x2 - 9 = 10x2 + 5x + 6x + 3

<=> 25x2 - 9 = 10x2 + 11x + 3

<=> 25x2 - 9 - 10x2 - 11x - 3 = 0

<=> 15x2 - 12 - 11x = 0

<=> 15x2 + 9x - 20x - 12 = 0

<=> 3x(5x + 3) - 4(5x + 3) = 0

<=> (5x + 3)(3x - 4) = 0

<=> 5x + 3 = 0 hoặc 3x - 4 = 0

<=> x = -3/5 hoặc x = 4/3

29 tháng 9 2018

\(\left(x-1\right)3+3x\left(x-1\right)=0\)

<=>  \(3\left(x-1\right)\left(x+1\right)=0\)

<=>  \(\orbr{\begin{cases}x-1=0\\x+1=0\end{cases}}\)

<=>  \(\orbr{\begin{cases}x=1\\x=-1\end{cases}}\)

Vậy...

9 tháng 9 2018

1) \(2x^4+3x^3-x^2+3x+2=0\)

\(\Rightarrow2x^4+x^3+2x^3+x^2-2x^2-x+4x+2=0\)

\(\Rightarrow x^3\left(2x+1\right)+x^2\left(2x+1\right)-x\left(2x+1\right)+2\left(2x+1\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(x^3+x^2-x+2\right)=0\)

\(\Rightarrow\left(2x+1\right)\left(x^3+2x^2-x^2-2x+x+2\right)=0\)

\(\Rightarrow\left(2x+1\right)\left[x^2\left(x+2\right)-x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Rightarrow\left(2x+1\right)\left(x+2\right)\left(x^2-x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\\x^2-x+1=0\end{matrix}\right.\)

Ta có:

\(x^2-x+1\)

\(=x^2-2x.\dfrac{1}{2}+\dfrac{1}{4}-\dfrac{1}{4}+1\)

\(=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)

\(\left(x-\dfrac{1}{2}\right)^2\ge0\) với mọi x

\(\Rightarrow\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\) với mọi x

\(\Rightarrow x^2-x+1\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}2x+1=0\\x+2=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=-2\end{matrix}\right.\)

9 tháng 9 2018

3) \(\left(x+2\right)^4+\left(x+4\right)^4=16\)

Đặt x + 3 = a, ta được

\(\left(a-1\right)^4+\left(a+1\right)^4=16\)

\(\Rightarrow\left[\left(a-1\right)^2\right]^2+\left[\left(a+1\right)^2\right]^2=16\)

\(\Rightarrow\left(a^2-2a+1\right)^2+\left(a^2+2a+1\right)^2=16\)

\(\Rightarrow a^4+4a^2+1+2a^2-4a^3-4a+a^4+4a^2+1+2a^2+4a^3+4a=16\)

\(\Rightarrow2a^4+2.4a^2+2+2.2a^2=16\)

\(\Rightarrow2a^4+8a^2+4a^2+2=16\)

\(\Rightarrow2a^4+12a^2+2-16=0\)

\(\Rightarrow2a^4+12a^2-14=0\)

\(\Rightarrow2a^4-2a^2+14a^2-14=0\)

\(\Rightarrow2a^2\left(a^2-1\right)+14\left(a^2-1\right)=0\)

\(\Rightarrow\left(a^2-1\right)\left(2a^2+14\right)=0\)

\(\Rightarrow\left(a-1\right)\left(a+1\right).2\left(a^2+7\right)=0\)

\(\Rightarrow\left(a-1\right)\left(a+1\right)\left(a^2+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\\a^2+7=0\end{matrix}\right.\)

\(a^2\ge0\) với mọi a

\(\Rightarrow a^2+7\ge7\) với mọi a

\(\Rightarrow a^2+7\) vô nghiệm

\(\Rightarrow\left[{}\begin{matrix}a-1=0\\a+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+3-1=0\\x+3+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x+2=0\\x+4=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-2\\x=-4\end{matrix}\right.\)

30 tháng 5 2017

\(3\left(2x-3\right)\left(3x+2\right)-2\left(x+4\right)\left(4x-3\right)+9x\left(4-x\right)=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x^2-3x\right)+\left(-2x+6\right)=0\)

\(\Leftrightarrow\left(x-3\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x=2\end{cases}}\)

30 tháng 5 2017

xin lỗi toán lớp 8 thì mk chịu

\(1,\)

\(2x\left(x-3\right)-\left(3-x\right)=0\)

\(\Leftrightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}2x+1=0\\x-3=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=\frac{-1}{2}\\x=3\end{cases}}\)

\(2,\)

\(3x\left(x+5\right)-6\left(x+5\right)=0\)

\(\Leftrightarrow\left(3x-6\right)\left(x+5\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}3x-6=0\\x+5=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=-5\end{cases}}\)

\(3,\)

\(x^4-x^2=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=0\\x^2-1=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\pm1\end{cases}}\)

\(4,\)

\(x^2-2x=0\)

\(\Leftrightarrow x\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=0\\x=2\end{cases}}\)

\(5,\)

\(x\left(x+6\right)-10\left(x-6\right)=0\)

\(\Leftrightarrow x^2+6x-10x+60=0\)

\(\Leftrightarrow x^2-4x+60=0\)

\(\Leftrightarrow x^2-4x+4+56=0\)

\(\Leftrightarrow\left(x-2\right)^2=-56\)(Vô lý)

=> Phương trình vô nghiệm

21 tháng 7 2016

giải mệt cả người mà có ai biết ơn đâu

6 tháng 3 2020

a) \(\left(3x-2\right)\left(9x^2+6x+4\right)-\left(3x-1\right)\left(9x^2-3x+1\right)=x-4\)

\(\Leftrightarrow\left(3x-2\right)\left[\left(3x\right)^2+3x\cdot2+2^2\right]-\left(3x-1\right)\left[\left(3x\right)^2+3x\cdot1+1\right]=x-4\)

\(\Leftrightarrow\left(3x\right)^3-2^3-\left[\left(3x\right)^3-1\right]=x-4\)

\(\Leftrightarrow x=-3\) ( thỏa mãn )

P/s : Đề câu b) viết lại nhé, mình không hiểu lắm :))

6 tháng 3 2020

\(9\left(2x+1\right)=4\left(x-5\right)^2\)

\(\Leftrightarrow18x+9=4\left(x^2-10x+25\right)\)

\(\Leftrightarrow18x+9=4x^2-40x+100\)

\(\Leftrightarrow4x^2-58x+91=0\)

Ta có \(\Delta=58^2-4.4.91=1908,\sqrt{\Delta}=6\sqrt{53}\)

\(\Rightarrow x=\frac{58\pm6\sqrt{53}}{8}\)