Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
a: \(B=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{6}{3\left(x-2\right)}+\dfrac{1}{x-2}\right):\left(\dfrac{x^2-4+16-x^2}{x+2}\right)\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{2}{x-2}+\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\left(\dfrac{x}{\left(x-2\right)\left(x+2\right)}-\dfrac{1}{x-2}\right):\dfrac{12}{x+2}\)
\(=\dfrac{x-x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x+2}{12}=\dfrac{-1}{6\left(x-2\right)}\)
b: Thay x=1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(\dfrac{1}{2}-2\right)}=\dfrac{-1}{6\cdot\dfrac{-3}{2}}=\dfrac{1}{9}\)
Thay x=-1/2 vào B, ta được:
\(B=\dfrac{-1}{6\cdot\left(-\dfrac{1}{2}-2\right)}=-\dfrac{1}{15}\)
c: Để B=2 thì \(\dfrac{-1}{6\left(x-2\right)}=2\)
=>6(x-2)=-1/2
=>x-2=-1/12
hay x=23/12
nhầm tí mjk sửa lại nè
(x+2)(x+3)-(x-2)(x+5)=0
<=>x2+5x+6-(x2+3x-10)=0
<=>x2+5x+6-x2-3x+10=0
<=>2x+16=0
<=>2x=-16
<=>x=-8
nhầm tí
(x+2)(x+3)-(x-2)(x+5)=0
<=>x2+5x+6-(x2+3x-10)=0
<=>x2+5x+6-x2-3x+10=0
<=>2x+16=0
<=>2x=-16
<=>x=-8
x4+x=x(x3+1)=x(x+1)(x2-x+1)
x4+64=x4+16x2+64-16x2=(x2+8)2-(4x)2=(x2+8+4x)(x2+8-4x)
4x4+81=4x4+36x2+81-36x2=(2x2+9)2-(6x)2=(2x2+9+6x)(2x2+9-6x)
64x4+y4=64x4+16(xy)2+y4-16(xy)2=(8x2+y2)-(4xy)2=(8x2+y2-4xy)(8x2+y2=4xy)
x4+4y4=x4+4(xy)2+4y4-4(xy)2=(x2+2y2-2xy)(x2+2y2+2xy)
x4+x2+1=(x4+2x2+1)-x2=(x2+1-x)(x2+1+x)
Mình làm có vài đoạn hơi tắt nha.
Ta có:( Bn ghi lại đề nha mình lười ghi đề ah)
\(\Leftrightarrow\) \(\left(x+2\right)\left(x+8\right).\left(x+4\right)\left(x+6\right)+16=0\)
\(\Leftrightarrow\)\(\left(x^2+10x+16\right).\left(x^2+10x+24\right)=0\)
\(\Leftrightarrow\)\(\left(x^2+10x+16\right).\left(x^2+10x+16+8\right)=0\)
Đặt \(t=x^2+10x+16\)
\(t.\left(t+6\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}t=0\\t+6=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}t=0\\t=-6\end{cases}}\)
a) x^2 - 11x + 18 = 0
=> x^2 - 2x - 9x + 18 = 0
=> x ( x- 2 ) - 9 ( x- 2 ) = 0
=> ( x- 9 )( x- 2 )= 0
=> x- 9 = 0 hoặc x - 2 = 0
=> x= 9 hoặc x = 2