K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 7 2018

(x-3)(x+5)=(x+3)(x-2)

<=>x2+5x-3x-15=x2-2x+3x-6

<=>x2+2x-15=x2+x-6

<=>x2+2x-15-(x2+x-6)=0

<=>x2+2x-15-x2-x+6=0

<=>x-9=0

<=>x=9

2 tháng 7 2018

\(\left(x-3\right)\left(x+5\right)=\left(x+3\right)\left(x-2\right)\)

\(x^2+5x-3x-15=x^2-2x+3x-6\)

\(x^2+5x-3x-x^2+2x-3x=15-6\)

\(x=9\)

11 tháng 9 2017

a)\(-3x\left(x+2\right)^2+\left(x+3\right)\left(x-1\right)\left(x+1\right)-\left(2x-3\right)^2\)

\(=-3x.\left(x^2+2.x.2+2^2\right)+\left(x^2+x+3x-3\right).\left(x+1\right)-\left(2x\right)^2-2.2.x.\left(-3\right)+\left(-3\right)^2\)

\(=-3x.\left(x^2+4x+4\right)+\left(x^2+\left(x+3x\right)-3\right).\left(x+1\right)-4x+12x+9\)

\(=-3x.\left(x^2+4x+4\right)+\left(x^2+4x-3\right)\left(x+1\right)-4x+12x+9\)

\(=-3x^3-12x^2-12x+x^3+4x^2-3x+x^2+4x-3-4x+12x+9\)

\(=\left(-3x^3-x^3\right)+\left(-12x^2+4x^2+x^2\right)+\left(-12x-3x+4x-4x+12x\right)+\left(-3+9\right)\)

\(=-2x^3-7x^2-3x+6\)

b)\(\left(x-3\right)\left(x+3\right)\left(x+2\right)-\left(x-1\right)\left(x^2-3\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)

\(=\left(x.\left(x+3\right)-3\left(x+3\right)\right)\left(x+2\right)-\left(x.\left(x^2-3\right)-1\left(x^2-3\right)\right)-5x\left(x+4\right)^2-\left(x-5\right)^2\)

\(=\left(x.x+x.3-3.x+\left(-3\right).3\right)\left(x+2\right)-\left(x.x^2+x.\left(-3\right)-1.x^2+\left(-1\right).\left(-3\right)\right)-5x.x+\left(-5x\right).4-x^2-2x5+5^2\)

\(=\left(x^2+3x-3x-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^2+\left(3x-3x\right)-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^2-9\right)\left(x+2\right)-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=x^3+2x^2-9x-15-x^3-3x-x^2+3-5x^2-20x-x^2-10x+25\)

\(=\left(x^3-x^3\right)+\left(2x^2-x^2-5x^2-x^2\right)+\left(-9x-3x-20x-10x\right)+\left(-18+3+25\right)\)

\(=-5x^2-42x+10\)

8 tháng 7 2017

a) Cậu xem lại đề đi 

b) \(3x.\left(x-2\right)-5x.\left(1-x\right)-8.\left(x^2-3\right)=4\)\(\Leftrightarrow3x^2-6x-5x+5x^2-8x^2+24-4=0\Leftrightarrow-11x+20=0\Leftrightarrow-11x=-20\Leftrightarrow x=\frac{20}{11}\)

c) \(2x^2+3.\left(x-1\right)\left(x+1\right)=5x\left(x+1\right)\Leftrightarrow2x^2+3\left(x^2-1\right)-5x\left(x+1\right)=0\)

\(\Leftrightarrow2x^2+3x^2-3-5x^2-5x=0\Leftrightarrow-5x=3\Leftrightarrow x=-\frac{3}{5}\)

8 tháng 7 2017

Trần Anh: Cảm ơn bạn nhiều nhé :)) Phần a đúng là có sai đề pạn ạ mik làm hoài mà cux ko ra hì hì !!~~ Dù sao mik cux cảm ơn pạn nhiều nhiều nhé :3 

16 tháng 10 2018

a,\(x^3-x=0\Rightarrow x\left(x^2-1\right)=0\Rightarrow x\left(x+1\right)\left(x-1\right)=0\)

b,\(x^2-2x+x-2=0\Rightarrow x\left(x-2\right)+\left(x-2\right)=0\Rightarrow\left(x-2\right)\left(x+1\right)=0\)

c,\(x^2-6x+8=x^2-4x-2x+8=x\left(x-4\right)-2\left(x-4\right)=\left(x-4\right)\left(x-2\right)\)

16 tháng 10 2018

\(x^3-x=0\)

\(\Leftrightarrow x\left(x^2-1\right)=0\)

\(\Leftrightarrow x\left(x-1\right)\left(x+1\right)=0\)

x=0 hoặc x-1=0=> x=1 hoặc x+1=0 => x=-1

\(x^2-2x+x-2=0\)

\(\Leftrightarrow x\left(x-2\right)+\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=-1\end{cases}}}\)

\(x^2-6x+8=0\)

\(\Leftrightarrow x^2-2x-4x+8=0\)

\(\Leftrightarrow x\left(x-2\right)-4\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-4\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\x=4\end{cases}}}\)

7 tháng 9 2020


\(a,4\left(2-x\right)^2+xy-2y\)

\(=4\left(2-x\right)^2-y\left(2-x\right)\)

\(=4-y\left(2-x\right)^2\left(2-x\right)\)

\(=\left(2-x\right)\left[\left(2-x\right)4-y\right]\)

\(=\left(2-x\right)\left(4x-8+y\right)\)

\(c,x^3+y^3+z^3-3xyz\)

\(=x^3+y^3+z^3+3x^2y-3x^2y+3xy^2-3xy^2-3xyz\)

\(=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2+z^3-3xyz\)

\(=\left(x+y\right)^3-3xy\left(x+1\right)+z^3-3xyz\)

\(=\left[\left(x+y\right)^3+z^3\right]-3xy\left(x+y\right)-3xyz\)

\(=\left[\left(x+y\right)+z\right]\left[\left(x+y\right)^2-\left(x+y\right)z+z^2\right]-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+2xy+y^2-xz-yz+z^2\right)-3xy\left(x+y+z\right)\)

\(=\left(x+y+z\right)\left(x^2+y^2+z^2-xy-xz-yz\right)\)

7 tháng 9 2020

a) 4(2 - x)2 + xy - 2y = 4(x - 2)2 + y(x - 2) = (4x - 8 + y)(x - 2)

b) 2(x - 1)3 - 5(x - 1)2 - (x - 1) = (x - 1)[2(x - 1)2 - 5(x - 1) - 1]

= (x - 1)(2x2 - 4x + 2 - 5x + 5 - 1) = (x - 1)(2x2 - 9x + 6)

c) x3 + y3 + z3 - 3xyz = (x + y)(x2 - xy + y2) + z3 - 3xyz

= (x + y)3 + z3 - 3xy(x + y) - 3xyz = (x + y + z)(x2 + 2xy + y2 - xz - yz + z2) - 3xy(x + y + z)

= (x + y + z)(x2 + y2 + z2 - xz - yz + 2xy - 3xy) = (x + y + z)(x2 + y2 + z2 - xy - yz - xz)

17 tháng 8 2019

a) \(x^7+x^5+x^4+x^3+x^2+1\)

\(=\left(x^7+x^4\right)+\left(x^5+x^2\right)+\left(x^3+1\right)\)

\(=x^4\left(x^3+1\right)+x^2\left(x^3+1\right)+\left(x^3+1\right)\)

\(=\left(x^3+1\right)\left(x^4+x^2+1\right)\)

\(=\left(x+1\right)\left(x^2-x+1\right)\left(x^4+x^2+1\right)\)