Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1, \(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
vậy \(x\) \(\in\) {-3; 3}
5, 4\(x^2\) - 36 = 0
4.(\(x^2\) - 9) = 0
\(x^2\) - 9 = 0
(\(x\) - 3)(\(x\) + 3) = 0
\(\left[{}\begin{matrix}x-3=0\\x+3=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) {-3; 3}
\(\left(y-2\right)\left(y-3\right)+\left(y-2\right)-1=0\)
\(\Leftrightarrow\left(y-2\right)\left(y-3\right)+\left(y-3\right)=0\)
\(\Leftrightarrow\left(y-3\right)^2=0\)
\(\Leftrightarrow y=3\)
\(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-3x+9+x-9\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(x^2-2x\right)=0\)
\(\Leftrightarrow\left(x+3\right)x\left(x-2\right)=0\)
\(\Leftrightarrow x\in\left\{0;-3;2\right\}\)
\(x\left(x-2\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=\left(x^2-2x\right)\left(x+2\right)-\left(x-3\right)\left(x^2+3x+9\right)\)
\(=x^3+2x^2-2x^2-4x-x^3-3x^2-9x+3x^2+9x+27\)
\(=9x-4x+27=5x+27\)
\(\left(2x+7\right)\left(4x^2-14x+49\right)-2x\left(2x-1\right)\left(2x+1\right)\)
\(=\left(2x+7\right)\left(4x^2-14+49\right)-\left(4x^2-2x\right)\left(2x+1\right)\)
\(8x^3-28x+98x+28x^2-98+343-8x^3-4x^2+4x^2+2x\)
\(\left(98x-28x+2x\right)+343=72x+343\)
a) Ta có: \(\left(x^2+1\right)^2-6\left(x^2+1\right)+9\)
\(=\left(x^2+1\right)^2-2\cdot\left(x^2+1\right)\cdot3+3^2\)
\(=\left(x^2+1-3\right)^2\)
\(=\left(x^2-2\right)^2\)
b) Ta có: \(16\left(x+1\right)^2-25\left(2x+3\right)^2\)
\(=\left[4\left(x+1\right)\right]^2-\left[5\left(2x+3\right)\right]^2\)
\(=\left(4x+4\right)^2-\left(10x+15\right)^2\)
\(=\left(4x+4-10x-15\right)\left(4x+4+10x+15\right)\)
\(=\left(-6x-11\right)\left(14x+19\right)\)
c) Ta có: \(x^{16}-1\)
\(=\left(x^8+1\right)\left(x^8-1\right)\)
\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)
d) Ta có: \(49\left(x+y\right)^2-36\left(2x+3y\right)^2\)
\(=\left[7\left(x+y\right)\right]^2-\left[6\left(2x+3y\right)\right]^2\)
\(=\left(7x+7y\right)^2-\left(12x+18y\right)^2\)
\(=\left(7x+7y-12x-18y\right)\left(7x+7y+12x+18y\right)\)
\(=\left(-5x-11y\right)\left(19x+25y\right)\)
e) Ta có: \(\left(x+y\right)^2-2\left(x+y\right)+1\)
\(=\left(x+y\right)^2-2\cdot\left(x+y\right)\cdot1+1^2\)
\(=\left(x+y-1\right)^2\)
f) Ta có: \(x^6-8\)
\(=\left(x^2\right)^3-2^3\)
\(=\left(x^2-2\right)\left(x^4+2x^2+4\right)\)
a: \(\Leftrightarrow\left(2x-3\right)^2-5x\left(2x-3\right)=0\)
=>(2x-3)(-3x-3)=0
=>x=-1 hoặc x=3/2
b: \(\Leftrightarrow49\left(x^2-10x+25\right)-8x-4=0\)
=>\(49x^2-498x+1221=0\)
=>\(x\in\left\{6.03;4.13\right\}\)
c: \(\Leftrightarrow\left(x+6\right)\left(x+6-8\right)=0\)
=>(x-2)(x+6)=0
=>x=2 hoặc x=-6
d: =>\(\left(16x+24\right)^2-\left(x-6\right)^2=0\)
=>(16x+24+x-6)(16x+24-x+6)=0
=>(17x+18)(15x+30)=0
=>x=-2 hoặc x=-18/17
x2 - 6x + 9
= (x -3)2 (hàng đẳng thức đáng nhớ số 2)
x2 + x + 1/4
= x2 + 2.x.1/2 + 1/4
= (x +1/2)2 (hàng đẳng thức 1)
x2-6x+9=(x+3)2
x2+x+\(\frac{1}{4}\)=\(\left(x+\frac{1}{2}\right)^2\)
Học tốt!
b)(x-2)3-(x-3)(x2+3x+9)+6(x+1)2=49
(=) x3- 6x2 +12 x -8 - ( x3 - 27 ) + 6( x2 + 2x +1)
(=) x3 - 6x2 +12x -8 - x3 +27 + 6x2 +12x +6
(=) 24x + 25 = 49
(=) 24x = 49 - 25 = 24
(=) x = 24/24 =1
\(\left[x-\frac{3}{2}\right]^3=\frac{1}{64}\)
\(\Leftrightarrow\left[x-\frac{3}{2}\right]^3=\left[\frac{1}{4}\right]^3\)
\(\Leftrightarrow x-\frac{3}{2}=\frac{1}{4}\Leftrightarrow x=\frac{1}{4}+\frac{3}{2}=\frac{7}{4}\)
\(\left[x+\frac{3}{2}\right]^2=\frac{9}{49}\)
\(\Leftrightarrow\left[x+\frac{3}{2}\right]^2=\left[\frac{3}{7}\right]^2\)
\(\Leftrightarrow x+\frac{3}{2}=\pm\frac{3}{7}\)
\(\Leftrightarrow\orbr{\begin{cases}x+\frac{3}{2}=\frac{3}{7}\\x+\frac{3}{2}=-\frac{3}{7}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-\frac{15}{14}\\x=-\frac{27}{14}\end{cases}}\)