![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Ta có : \(x^2-2x-1=0
\)
\(\Leftrightarrow \)\((x-1)^2=2\)
\(\Leftrightarrow
\)\(\left[\begin{array}{}
x-1=\sqrt{2}\\
x-1=-\sqrt{2}
\end{array} \right.\)
Đặt P = \(\dfrac{x^6-6x^5+12x^4-8x^3+2015}{x^6-8x^3-12x^2+6x+2015}\)
=\(\dfrac{(x^6-2x^5-x^4)-(4x^5-8x^4-4x^3)+(5x^4-10x^3-5x^2)-(2x^3-4x^2-2x)+(x^2-2x-1)+2016}
{(x^6-2x^5-x^4)+(2x^5-4x^4-2x^3)+(5x^4-10x^3-5x^2)+(4x^3-8x^2-4x)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{x^4(x^2-2x-1)-4x^3(x^2-2x-1)+5x^2(x^2-2x-1)-2x(x^2-2x-1)+(x^2-2x-1)+2016}
{x^4(x^2-2x-1)+2x^3(x^2-2x-1)+5x^2(x^2-2x-1)+4x(x^2-2x-1)+(x^2-2x-1)+12x+2016}\)
=\(\dfrac{2016}{12x + 2016}\)
=\(\dfrac{2016}{12(x+1)+2004}\)
=\(\dfrac{168}{x+1+167}\)
=\(\left[\begin{array}{}
\dfrac{168}{\sqrt{2}+167}\\
\dfrac{168}{-\sqrt{2}+167}
\end{array} \right.\)
Chú thích: Hình như mẫu là \(-6x\) chứ không phải \(6x
\) bạn ạ. Hay là mình phân tích sai thì cho mình xin lỗi nhé.
![](https://rs.olm.vn/images/avt/0.png?1311)
a,5x(4x-3)+6-8x=0
=>5x(4x-3)-8x+6=0
=>5x(4x-3)-2(4x-3)=0
=>(5x-2)(4x-3)=0
=>\(\orbr{\begin{cases}5x-2=0\\4x-3=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{2}{5}\\x=\frac{3}{4}\end{cases}}}\)
b, 5x(x-9)-x+9=0
=>5x(x-9)-(x-9)=0
=>(5x-1)(x-9)=0
=>\(\orbr{\begin{cases}5x-1=0\\x-9=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{1}{5}\\x=9\end{cases}}}\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^3-2x^2+2x=0\)
\(\Rightarrow x\left(x^2-2x+2\right)=0\)
\(\Rightarrow x\left(x^2-2.x.1+1^2+1\right)=0\)
\(\Rightarrow x\left[\left(x-1\right)^2+1\right]=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2+1=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\\left(x-1\right)^2=-1\end{matrix}\right.\Rightarrow x=0\)
\(2x^3-5x^2+8x-5=0\)
\(\Rightarrow2x^3-3x^2-2x^2+5x+3x-5=0\)
\(\Rightarrow\left(2x^3-2x^2\right)-\left(3x^2-3x\right)+\left(5x-5\right)=0\)
\(\Rightarrow2x^2\left(x-1\right)-3x\left(x-1\right)+5\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x^2-3x+5\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a/ 5x(4x - 3) + 6 - 8x = 0
<=> 5x(4x - 3) - 2(4x - 3) = 0
<=> (4x - 3)(5x - 2) = 0
<=> \(\left[{}\begin{matrix}4x-3=0\\5x-2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{4}\\x=\dfrac{2}{5}\end{matrix}\right.\)
b/ 5x(x-9) - x + 9 = 0
<=> 5x(x - 9) - (x - 9) = 0
<=> (x-9)(5x-1) = 0
<=> \(\left[{}\begin{matrix}x-9=0\\5x-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=9\\x=\dfrac{1}{5}\end{matrix}\right.\)
\(a.\)
\(5x\left(4x-3\right)+6-8x=0\)
\(\Rightarrow5x\left(4x-3\right)-2\left(4x-3\right)=0\)
\(\Rightarrow\left(5x-2\right)\left(4x-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-2=0\\4x-3=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{2}{5}\\x=\dfrac{3}{4}\end{matrix}\right.\)
Vậy : .............................
\(b.\)
\(5x\left(x-9\right)-x+9=0\)
\(\Rightarrow5x\left(x-9\right)-\left(x-9\right)=0\)
\(\Rightarrow\left(5x-1\right)\left(x-9\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}5x-1=0\\x-9=0\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=9\end{matrix}\right.\)
Vậy : ........................
![](https://rs.olm.vn/images/avt/0.png?1311)
A=\(\frac{13-x}{x+3}+\frac{6x^2+6}{x^4-8x^2-9}-\frac{3x+6}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\)\(\Leftrightarrow\frac{13-x}{x+3}+\frac{6\left(x^2+1\right)}{\left(x-3\right)\left(x+3\right)\left(x^2+1\right)}-\frac{3\left(x+2\right)}{\left(x+2\right)\left(x+3\right)}-\frac{2}{x-3}=0\) ( với \(x^4-8x^2-9=x^4-9x^2+x^2-9=x^2\left(x^2-9\right)+\left(x^2-9\right)=\left(x^2-9\right)\left(x^2+1\right)=\left(x-3\right)\left(x+3\right)\left(x^2+1\right)\)
A= \(\frac{13-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{3}{x+3}-\frac{2}{x-3}=0\) \(\Leftrightarrow\frac{10-x}{x+3}+\frac{6}{\left(x-3\right)\left(x+3\right)}-\frac{2}{x-3}=0\) \(\Leftrightarrow\left(10x-30\right)\left(x-3\right)+6-2\left(x+3\right)=0\Leftrightarrow-x^2+11x-30=0\) \(\Leftrightarrow\left[\begin{array}{nghiempt}x=6\\x=5\end{array}\right.\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a: \(x^3-5x^2+8x-4=0\)
\(\Leftrightarrow x^3-x^2-4x^2+4x+4x-4=0\)
\(\Leftrightarrow\left(x-1\right)\left(x^2-4x+4\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-2\right)^2=0\)
hay \(x\in\left\{1;2\right\}\)
b: \(2x^3-x^2+3x+6=0\)
\(\Leftrightarrow2x^3+2x^2-3x^2-3x+6x+6=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x^2-3x+6\right)=0\)
=>x+1=0
hay x=-1
(x - 3)(-x^3 + 8x + 6) = 0
<=> x - 3 = 0 hoặc -x^3 + 8x + 6 = 0
<=> x = 3