Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tìm x:
(x+3)3 - (x(3x+1)2 + (2x+1)4x2 - (2x+1) - 3x2=54
(x-3)3 - (x-3)(x2+3x+9)+ 6(x+1)2 + 3x2 = -33
1.
(x + 3)3 - x(3x + 1)2 + (2x + 1)(4x2 - 2x + 1) - 3x2 = 54
x3 + 9x2 + 27x + 27 - x(9x2 + 6x + 1) + 8x3 + 1 - 3x2 = 54
9x3 + 6x2 + 27x - 9x3 - 6x2 - x
= 54 - 27 - 1
26x = 26
x = 1
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)
<=> \(x^3-9x^2+27x-27\) \(-\left(x^3-3^3\right)+6\left(x^2+2x+1\right)+3x^2=-33\)
<=> \(x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=-33\)
<=> \(-6x^2+39x+6=-33\)
<=> \(6x^2-39x-6=33\)
<=> \(6x^2-39x-39=0\)
<=> \(6\left(x^2-\frac{39}{6}x-\frac{39}{6}\right)=0\)
<=> \(x^2-2.x.\frac{39}{12}+\frac{1521}{144}-\frac{273}{16}=0\)
<=> \(\left(x-\frac{39}{12}\right)^2-\frac{273}{16}=0\)
<=> \(\left(x-\frac{39}{12}-\frac{\sqrt{273}}{4}\right)\left(x-\frac{39}{12}+\frac{\sqrt{273}}{4}\right)=0\)
<=> \(\left(x-\frac{13+\sqrt{273}}{4}\right).\left(x-\frac{13-\sqrt{273}}{4}\right)=0\)
<=> \(x=\frac{13+\sqrt{273}}{4}\) ( h ) \(x=\frac{13-\sqrt{273}}{4}\)
học tốt
\(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)
\(\Leftrightarrow\left(x-3\right)^3-\left(x-3\right)^3+6\left(x+1\right)^2+3x^2=-33\)
\(\Leftrightarrow6\left(x+1\right)^2+3x^2=-33\text{ vô lý }\left(\text{vì }6\left(x+1\right)^2\ge0;3x^2\ge0\right)\)
\(\text{Vậy không có x nào thỏa mãn}\)
a: \(\left(x+3\right)^3-x\left(2x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=54\)
\(\Leftrightarrow x^3+9x^2+27x+27+8x^3+1-3x^2-x\left(2x+1\right)^2=54\)
\(\Leftrightarrow9x^3+6x^2+27x+28-4x^3-4x^2-x-54=0\)
\(\Leftrightarrow5x^3+2x^2+26x-26=0\)
\(\Leftrightarrow x\simeq0,835\)
b: \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=33\)
\(\Leftrightarrow x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2=33\)
\(\Leftrightarrow39x-21=33\)
=>39x=54
hay x=18/13
a) \(\left(x+3\right)^2-x\left(3x+1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-2x^2=54\)
=> x2 + 6x + 9 - x(9x2 + 6x + 1) + (2x)3 + 13 - 2x2 = 54
=> x2 + 6x + 9 - 9x3 - 6x2 - x + 8x3 + 1 - 2x2 = 54
=> (-9x3 + 8x3) + (x2 - 6x2 - 2x2) + (6x - x) + (9 + 1) = 54
=> -x3 - 7x2 + 5x + 10 = 54
=> -(x3 + 7x2 - 5x - 10) = 54
=> phương trình vô nghiệm
b) (x + 3)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 + 3x = -33
=> x3 + 9x2 + 27x + 27 - (x3 - 33) + 6(x2 + 2x + 1) + 3x = -33
=> x3 + 9x2 + 27x + 27 - x3 + 27 + 6x2 + 12x + 6 + 3x = -33
=> (x3 - x3) + (9x2 + 6x2) + (27x + 12x + 3x) + (27 + 27 + 6) = -33
=> 15x2 + 42x + 60 = -33
=> 15x2 + 42x + 60 + 33 = 0
=> 15x2 + 42x + 93 = 0
=> 3(5x2 + 14x + 31) = 0
=> 5x2 + 14x + 31 = 0
=> không tìm được x
Tìm x:
a/ \(\left(x+3\right)^3-x\left(3x-1\right)^2+\left(2x+1\right)\left(4x^2-2x+1\right)-3x^2=54\)
<=> \(x^3+9x^2+27x+27-9x^3+6x^2-x+8x^3+1-3x^2-54=0\)<=> \(12x^2+26x-26=0\)
<=> \(\left[\begin{array}{} x=\dfrac{-13+\sqrt{481}}{12}\\ x=\dfrac{-13-\sqrt{481}}{12} \end{array} \right.\)
b/ \(\left(x-3\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2+3x^2=-33\)
<=> \(x^3-9x^2+27x-27-x^3+27+6x^2+12x+6+3x^2+33=0\)
<=> 39x+39=0
<=> x=-1
a)(x+3)3-x(3x+1)2+(2x+1)(4x2-2x+1-3x2)=54
\(\Rightarrow\)x3+9x2+27x+27-x(9x2+6x+1)+(2x+1)(x2-2x+1)=54
\(\Rightarrow\)x3+9x2+27x+27-9x3-6x2-x+2x3-4x2+2x+x2-2x+1=54
\(\Rightarrow\)-6x3+26x+28=54
\(\Rightarrow\)-6x3+26x=54-28
\(\Rightarrow\)-6x3+26x=26
\(\Rightarrow\)-6x3+26x-26=0
\(\Rightarrow\)-2(3x3+13x+14)
(x-3)(x2+3x+9)-(33+x3)
=x3+3x2+9x-3x2-9x-27-33-x3
=-27-33
=-60