x = 2y ; 3y = 4z và  x + y + z = 60

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2021

x=2y⇒4x=8y⇔x8=y4(1)x=2y⇒4x=8y⇔x8=y4(1)

3y=4z⇔y4=z3(2)3y=4z⇔y4=z3(2)

Từ (1) và (2) suy ra : x8=y4=z3x8=y4=z3

Áp dụng tính chất dãy tỉ số bằng nhau , ta có :

x8=y4=z3=x+y+z8+4+3=6015=4x8=y4=z3=x+y+z8+4+3=6015=4

Vậy x8=4⇔x=32x8=4⇔x=32

       y4=4⇔y=16y4=4⇔y=16

       z3=4⇔z=12

Đây nhé bạn. Chúc bạn học tốt nha!

27 tháng 12 2021

Answer:

\(x=2y\Rightarrow4x=8y\Rightarrow\frac{x}{8}=\frac{y}{4}\)

\(3y=4z\Rightarrow\frac{y}{4}=\frac{z}{3}\)

\(\Rightarrow\frac{x}{8}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau

\(\frac{x}{8}=\frac{y}{4}=\frac{z}{3}=\frac{x+y+z}{8+4+3}=\frac{60}{15}=4\)

\(\Rightarrow\hept{\begin{cases}x=32\\y=16\\z=12\end{cases}}\)

18 tháng 10 2020

a, Thiếu đề 

b, Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=-\frac{24}{-4}=6\)

\(x=6;y=36;z=18\)

c, Ta có : \(3x-2y=4z\Leftrightarrow3x-2y-4z=0\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có : 

\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y-4z}{6-2-12}=\frac{0}{-8}=0\)

\(x=y=z=0\)

18 tháng 10 2020

b) Đặt \(x=\frac{y}{6}=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=k\\y=6k\\z=3k\end{cases}}\)

Khi đó 2x - 3y + 4z = -24

<=> 2k - 3.6k + 4.3k = -24

=> 2k - 18k + 12k = -24

=> -4k = -24

=> k = 6

=> x = 1 ; y = 36 ; z = 18

c) Đặt \(\frac{x}{2}=y=\frac{z}{3}=k\Rightarrow\hept{\begin{cases}x=2k\\y=k\\z=3k\end{cases}}\)

Khi đó 3x - 2y = 4z

<=> 3.2k - 2k = 4.3k

=> 6k - 4k = 12k

=> 2k = 12k

=> k = 0

=> x = y = z = 0

12 tháng 7 2019

a

Đặt \(\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}=k\)

\(\Rightarrow x=2k+1;y=3k+2;z=4k+3\)

Thay vào,ta được:

\(2\left(2k+1\right)+3\left(3k+2\right)-\left(4k+3\right)=50\)

\(\Leftrightarrow4k+2+9k+6-4k-3=50\)

\(\Leftrightarrow9k+5=50\)

\(\Leftrightarrow9k=45\)

\(\Leftrightarrow k=5\)

12 tháng 7 2019

\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{5x-5}{10}=\frac{3y+9}{12}=\frac{4z-20}{24}\)

\(=\frac{5x-5-3y-9-4z+20}{10-12-24}=\frac{\left(5x-3y-4z\right)+\left(20-5-9\right)}{26}=\frac{46+6}{26}=2\)

\(\Rightarrow x=2\cdot2+1=5\)

\(y=4\cdot2-3=5\)

\(z=2\cdot6+5=17\)

Câu c tương tự như câu 1

21 tháng 9 2019

a, Ta có : \(x=2y=4z\) => \(\frac{x}{4}=\frac{2y}{4}=\frac{4z}{4}\)=> \(\frac{x}{4}=\frac{y}{2}=\frac{z}{1}\)=> \(\frac{x^2}{16}=\frac{y^2}{4}=\frac{z^2}{1}\)=> \(\frac{x^2}{16}=\frac{2y^2}{8}=\frac{z^2}{1}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x^2}{16}=\frac{2y^2}{8}=\frac{z^2}{1}=\frac{x^2+2y^2-z^2}{16+8-1}=\frac{23}{23}=1\)

=> \(\hept{\begin{cases}\frac{x^2}{16}=1\\\frac{y^2}{4}=1\\\frac{z^2}{1}=1\end{cases}}\)=> \(\hept{\begin{cases}x^2=16\\y^2=4\\z^2=1\end{cases}}\)=> \(\hept{\begin{cases}x=\pm4\\y=\pm2\\z=\pm1\end{cases}}\)

b, Ta có : \(x=3y=5z=6t\)=> \(\frac{x}{30}=\frac{3y}{30}=\frac{5z}{30}=\frac{6t}{30}\)=> \(\frac{x}{30}=\frac{y}{10}=\frac{z}{6}=\frac{t}{5}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có :

\(\frac{x}{30}=\frac{y}{10}=\frac{z}{6}=\frac{t}{5}=\frac{x-y+z-t}{30-10+6-5}=\frac{21}{21}=1\)

=> x = 30 , y = 10 , z = 6 , t = 5

9 tháng 8 2016

Theo đề bài, ta có:

\(3x=4y;3y=4z\) hay \(\frac{x}{3}=\frac{y}{4};\frac{y}{3}=\frac{z}{4}\) và 2x+3y-5z=55

\(\Rightarrow\frac{x}{9}=\frac{y}{12};\frac{y}{12}=\frac{z}{16}\)

Áp dụng tính chất của dãy tỉ số bằng nhau:

\(\frac{x}{9}=\frac{y}{12}=\frac{z}{16}=\frac{2x+3y-2z}{2.9+3.12-2.16}=\frac{55}{22}=\frac{5}{2}\)

  • \(\frac{x}{9}=\frac{5}{2}.9=\frac{45}{2}\)
  • \(\frac{y}{12}=\frac{5}{2}.12=30\)
  • \(\frac{z}{16}=\frac{5}{2}.16=40\)

Vậy \(x=\frac{45}{2},y=30,z=40\)

 

 

9 tháng 8 2016

- Bơ Phếch ~

13 tháng 10 2021

sai từ chỗ z/7.1/4= z/28 nha k phải 27 vì bạn làm sai nên nhg câu đó bn k ra kết quả!

 

24 tháng 7 2019

#)Giải :

1)Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{2}=\frac{y}{1}=\frac{z}{3}=\frac{3x-2y+4z}{6-2+12}=\frac{16}{16}=1\Leftrightarrow\hept{\begin{cases}\frac{x}{2}=1\\\frac{y}{1}=1\\\frac{z}{3}=1\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\y=1\\z=3\end{cases}}}\)

Vậy x = 2; y = 1; z = 3

2)Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{x}{1}=\frac{y}{6}=\frac{z}{3}=\frac{2x-3y+4z}{2-18+12}=\frac{-24}{-4}=6\Leftrightarrow\hept{\begin{cases}\frac{x}{1}=6\\\frac{y}{6}=6\\\frac{z}{3}=6\end{cases}\Leftrightarrow\hept{\begin{cases}x=6\\y=36\\z=18\end{cases}}}\)

Vậy x = 6; y = 36; z = 18

3)Áp dụng tính chất dãy tỉ số bằng nhau : 

\(\frac{x}{0,5}=\frac{y}{0,3}=\frac{x-y}{0,5-0,3}=\frac{1}{0,2}=5\Leftrightarrow\hept{\begin{cases}\frac{x}{0,5}=5\\\frac{y}{0,3}=5\\\frac{z}{0,2}=5\end{cases}\Leftrightarrow\hept{\begin{cases}x=2,5\\y=1,5\\z=1\end{cases}}}\)

Vậy x = 2,5; y = 1,5; z = 1

14 tháng 10 2017

a) Do \(2x=3y=-2z\) nên \(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta được:
\(\frac{2x}{1}=\frac{3y}{1}=\frac{4z}{-2}=\frac{2x-3y+4z}{1-1+\left(-2\right)}=\frac{48}{-2}=-24\)    ( do 2x - 3y + 4z = 48 )
Khi đó: 
\(\frac{2x}{1}=-24\)\(\Rightarrow2x=-24\)\(\Rightarrow x=\frac{-24}{2}=-12\)
\(\frac{3y}{1}=-24\)\(\Rightarrow3y=-24\)\(\Rightarrow y=\frac{-24}{3}=-8\)
\(\frac{4z}{-2}=-24\)\(\Rightarrow-2z=-24\)\(\Rightarrow z=\frac{-24}{-2}=12\)
Vậy x = -12 ; y = -8 ; z = 12

14 tháng 10 2017

Vũ Quang Vinh: tks bạn nhiềuu

17 tháng 6 2019

a) 2x=3y-2x=5z-3y

<=> 2x+2x=3y+3y=5z

<=> 4x=6y=5z

\(\Leftrightarrow\frac{x}{6}=\frac{y}{5}=\frac{z}{4}\)

Áp dụng t/c dãy tỉ số bằng nhau ta có :

\(\frac{x}{6}=\frac{y}{5}=\frac{z}{4}=\frac{x+y+z}{6+5+4}=\frac{53}{15}\)

Từ đó => được x,y,z

b,c tương tự a

23 tháng 7 2018

a, Vì \(\left|3x-2y\right|\ge0;\left|3y-4z\right|\ge0\Rightarrow\left|3x-2y\right|+\left|3y-4z\right|\ge0\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}3x-2y=0\\3y-4z=0\end{cases}\Leftrightarrow\hept{\begin{cases}3x=2y\\3y=4z\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{2}=\frac{y}{3}\\\frac{y}{4}=\frac{z}{3}\end{cases}\Leftrightarrow}\hept{\begin{cases}\frac{x}{8}=\frac{y}{12}\\\frac{y}{12}=\frac{z}{9}\end{cases}\Leftrightarrow}\frac{x}{8}=\frac{y}{12}=\frac{z}{9}}\)

\(\Leftrightarrow\frac{x}{8}=\frac{2y}{24}=\frac{3z}{27}=\frac{x-2y+3z}{8-24+27}=\frac{5}{11}\)

từ đây tìm x,y,z

b,Ta có: \(\frac{2x+3}{2}=\frac{3x-6}{5}\Rightarrow5\left(2x+3\right)=2\left(3x-6\right)\Rightarrow10x+15=6x-12\Rightarrow4x=-27\Rightarrow x=\frac{-27}{4}\)

Thay x=-27/4 vào \(\frac{3x-6}{5}=\frac{3x+3y+1}{3x}\), ta được:

\(\frac{3\cdot\left(\frac{-27}{4}\right)-6}{5}=\frac{3.\left(\frac{-27}{4}\right)+3y+1}{3.\left(\frac{-27}{4}\right)}\)

\(\Rightarrow\frac{-21}{4}=\frac{\frac{-77}{4}+3y}{\frac{-81}{4}}\Rightarrow\frac{-77}{4}+3y=\frac{1701}{16}\Rightarrow3y=\frac{2009}{16}\Rightarrow y=\frac{2009}{48}\)

Vậy x=-27/4,y=2009/48