Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Biến đổi bt tương đương : (x^2-1) / 2 = y^2
Ta có: vì x,y là số nguyên dương nên
+) x > y và x phải là số lẽ.
Từ đó đặt x = 2k + 1 (k nguyên dương);
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Biến đổi bt tương đương : (x^2-1) / 2 = y^2
Ta có: vì x,y là số nguyên dương nên
+) x > y và x phải là số lẽ.
Từ đó đặt x = 2k + 1 (k nguyên dương);
Biểu thức tương đương 2 * k * ( k + 1 ) = y ^ 2 (*);
Để ý rằng:
Y là 1 số nguyên tố nên y^2 sẽ là 1 số nguyên dương mà nó có duy nhất 3 ước là :
{1,y, y^2} ;
từ (*) dễ thấy y^2 chia hết cho 2, dĩ nhiên y^2 không thể là 2, vậy chỉ có thể y=2 =>k=1;
=>x=3.
Vậy ta chỉ tìm được 1 cặp số nguyên tố thoả mãn bài ra là x=3 và y=2 (thoả mãn).
Nhớ like cho mình nha ^^
1) Quy luật cứ mũ chẵn 2 số tận cùng là 01 còn mũ lẻ thì 2 số tận cùng là 51
Vậy 2 số tận cùng của 51^51 là 51
2)pt<=> x-2=0 hoặc (x-2)^2=1 <=> x=2 hoặc x=1 hoặc x=3
Vậy trung bìng cộng là 2
4)Pt<=> (x-7)^(x+1)=0 hoặc 1-(x-7)^10=0=> x=7 hoặc x=8 hoặc x=6
Do x là số nguyên tố => x=7 TM
5)3y=2z=> 2z-3y=0
4x-3y+2z=36=> 4x=36=> x=9
=> y=2.9=18=> z=3.18/2=27
=> x+y+z=9+18+27=54
6)pt<=> x^2=0 hoặc x^2=25 <=> x=0 hoặc x=-5 hoặc x=5
7)pt<=> (3x+2)(5x+1)=(3x-1)(5x+7)
Nhân ra kết quả cuối cùng là x=3
8)ta có (3x-2)^5=-243=-3^5
=> 3x-2=-3 => x=-1/3
9)Câu này chưa rõ ý bạn muốn hỏi!
10)2x-3=4 hoặc 2x-3=-4
<=> x=7/2 hoặc x=-1/2
11)x^4=0 hoặc x^2=9
=> x=0 hoặc x=-3 hoặc x=3
\(VT=2\left|x+3\right|+3\left|x+2\right|+4\left|x+1\right|+5\ge5\) với mọi x
=> VP = \(x\ge5\)
Với \(x\ge5\) ta có: 2(x + 3) + 3(x + 2) + 4(x + 1) + 5 = x
=> 2x + 6 + 3x + 6 + 4x + 4 + 5 = x
=> 9x + 21 = x
=> 9x - x = -21
=> 8x = -21
=> x < 0, không thỏa mãn đk \(x\ge5\)
Vậy không tìm được x thỏa mãn đăng thức như đề bài
Ta có:
\(2\left|x+3\right|+3\left|x+2\right|+4\left|x+1\right|+5=x\)
Ta thấy: \(VT>0\)
Vậy \(x>0\)
Bỏ GTTĐ ta có :
\(8x=-21\)
Vậy x âm (Vô lý)
Không có giá trị của x thỏa mãn.
Answer:
Có \(ƯCLN\left(2y+5;3y+2\right)=x\) nên có:
\(\hept{\begin{cases}2y+5⋮x\\3y+2⋮x\end{cases}}\Rightarrow3\left(2y+5\right)-2\left(3y+2\right)⋮x\Rightarrow11⋮x\Rightarrow x\inƯ\left(11\right)=\left\{\pm1;\pm11\right\}\)
Mà x > 10 => x = 11
Với x = 11, lại có y < 30
\(\Rightarrow2y+5< 65;2y+5⋮11\)
Các số bé hơn 65 và chia hết cho 11 là: 22; 33; 44; 55 và 3y + 2 cũng chia hết cho 11
Trường hợp 1: \(2y+5=11\)
\(\Rightarrow y=3\)
\(\Rightarrow3y+2=11⋮11\) (Thoả mãn)
Trường hợp 2: \(2y+5=22\)
\(\Rightarrow2y=17\) (Loại)
Trường hợp 3: \(2y+5=33\)
\(\Rightarrow y=14\)
\(\Rightarrow3y+2=44⋮11\) (Thoả mãn)
Trường hợp 4: \(2y+5=44\)
\(\Rightarrow2y=39\) (Loại)
Trường hợp 5: \(2y+5=55\)
\(\Rightarrow y=25\)
\(\Rightarrow3y+2=77⋮11\) (Thoả mãn)
Vậy x = 11 và \(y\in\left\{3;14;25\right\}\)
ta có VT = |x+1|+|x-10|
= |x+1| + |10-x| > |x+1+10-x| = 11
đẳng thức |x+1| + |x-10| = 11 <=> VT=VP=11 <=> (x+1)(10-x) > 0 <=> -1 < 0 < 10
\(\dfrac{1}{2}\)y hay \(\dfrac{1}{2y}\) thế em ơi???
|x-2y-1|=10-5=5
x-2y-1=-5 hoac x-2y-1=5
x-2y=-4 hoac x-2y=6
............................................
............................................