\(x^2\)-10)=72

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 8 2016

đặt ẩn đi

20 tháng 8 2016

seo mak mt của tui mấy cái hàm cừ nhàu lên hết á

==

a: \(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow x^4-14x^2+40-72=0\)

\(\Leftrightarrow\left(x^2-16\right)\left(x^2+2\right)=0\)

\(\Leftrightarrow x\in\left\{4;-4\right\}\)

c: \(\left(x^2+x\right)^2+4\left(x^2+x\right)=12\)

\(\Leftrightarrow\left(x^2+x\right)^2+6\left(x^2+x\right)-2\left(x^2+x\right)-12=0\)

\(\Leftrightarrow\left(x^2+x+6\right)\left(x^2+x-2\right)=0\)

=>(x+2)(x-1)=0

=>x=1 hoặc x=-2

 

8 tháng 2 2020

\(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow\left(3x-4\right)^2-\left(2x+2\right)^2=0\)

\(\Leftrightarrow\left(3x-4-2x-2\right)\left(3x-4+2x+2\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\) ( thỏa mãn )

Vậy : ...

8 tháng 2 2020

1/ \(\left(3x-4\right)^2-4\left(x+1\right)^2=0\)

\(\Leftrightarrow9x^2-24x+16-4\left(x^2+2x+1\right)=0\)

\(\Leftrightarrow9x^2-24x+16-4x^2-8x-4=0\)

\(\Leftrightarrow5x^2-32x+12=0\)

\(\Leftrightarrow5x^2-30x-2x+12=0\)

\(\Leftrightarrow5x\left(x-6\right)-2\left(x-6\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left(5x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x-6=0\\5x-2=0\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x=6\\x=\frac{2}{5}\end{cases}}\)

Vậy tập nghiệm của phương trình là : \(S=\left\{6;\frac{2}{5}\right\}\)

2/ \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4+2x^3-3x^2-6x-2x-4=0\)

\(\Leftrightarrow x^3\left(x+2\right)-3x\left(x+2\right)-2\left(x+2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3-3x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left(x^3+2x^2+x-2x^2-4x-2\right)=0\)

\(\Leftrightarrow\left(x+2\right)\left[x\left(x^2+2x+1\right)-2\left(x^2+2x+1\right)\right]=0\)

\(\Leftrightarrow\left(x+2\right)\left(x+1\right)^2\left(x-2\right)=0\)

\(\Leftrightarrow\)\(x+2=0\)

hoặc   \(x+1=0\)

hoặc   \(x-2=0\)

\(\Leftrightarrow\)\(x=2\)

hoặc   \(x=-1\)

hoặc   \(x=2\)

Vậy tập nghiệm của phương trình là \(S=\left\{2;-2;-1\right\}\)

5 tháng 3 2020

\(\Leftrightarrow\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-2\right)\left(x-5\right)}+\frac{9x}{x^2-7x+10}=10\)

\(\Leftrightarrow\frac{3x^2-15x-x^2+2x+9x}{\left(x-2\right)\left(x-5\right)}=10\)

\(\Leftrightarrow2x^2-4x=10x^2-70x+100\)

\(\Leftrightarrow8x^2-66+100=0\)

\(\Leftrightarrow4x^2-33x+50=0\)

\(\Leftrightarrow4x\left(x-2\right)-25\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-25\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x=\frac{25}{4}\end{matrix}\right.\)

6 tháng 3 2020

b) [(x-7)(x-2)][(x-4)(x-5)]=72

<=> (x2-9x+14)(x2-9x+20)=72

Đặt x2-9x+17=a

=> (a+3)(a-3)=72

<=> a2-9=72

<=> a2=81

=> a=\(\left\{9;-9\right\}\)

TH1: a=9

=> x2-9x+17=9

<=> x2-9x+8=0

<=> (x-1)(x-8)=0

=> x=\(\left\{1;8\right\}\)

TH2: a=-9

=> x2-9x+17=-9

<=> x2-9x+26=0

<=> x2-9x+20,25+5,75=0

<=> (x-4,5)2+5,75=0

=> x\(\in\varnothing\)

Vậy x=\(\left\{1;8\right\}\)

22 tháng 1 2020

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\)

\(\Leftrightarrow\left[\left(x^2-7\right)+3\right]\left[\left(x^2-7\right)-3\right]=72\)

\(\Leftrightarrow\left(x^2-7\right)^2-9=72\)

\(\Leftrightarrow\left(x^2-7\right)^2=81\)

\(\Leftrightarrow\orbr{\begin{cases}x^2-7=9\\x^2-7=-9\end{cases}}\)

\(\Leftrightarrow\orbr{\begin{cases}x^2=16\\x^2=-2\left(loai\right)\end{cases}}\)

\(\Leftrightarrow x=\pm4\)

22 tháng 1 2020

\(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\)

Đặt \(y=x^2-7\) Pt trở thành: \(\left(y+3\right)\left(y-3\right)=73\)

\(\Leftrightarrow y^2-9=72\)

\(\Leftrightarrow y^2=81\)

\(\Leftrightarrow y=\pm9\)

Từ đó tìm được: \(x_1=-4;x_2=4\)

5 tháng 3 2020

\(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{9x}{x^2-7x+10}=10\)

\(\Rightarrow\frac{3x^2-15x-x^2+2x+9x}{x^2-7x+10}=10\)

\(\Rightarrow\frac{2x^2-4x}{x^2-7x+10}=10\)

\(\Rightarrow2x^2-4x=10x^2-70x+100\)

\(\Rightarrow8x^2-66x+100=0\)

Ta có \(\Delta=66^2-4.8.100=1156,\sqrt{\Delta}=34\)

\(\Rightarrow\orbr{\begin{cases}x=\frac{66+34}{16}=\frac{25}{4}\\x=\frac{66-34}{16}=2\end{cases}}\)

5 tháng 3 2020

a) \(\frac{3x}{x-2}-\frac{x}{x-5}+\frac{9x}{x^2-7x+10}=10\)

<=> \(\frac{3x\left(x-5\right)}{\left(x-2\right)\left(x-5\right)}-\frac{x\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}+\frac{9x}{\left(x-2\right)\left(x-5\right)}=10\)

<=> \(\frac{3x^2-15x-x^2+2x+9x}{\left(x-5\right)\left(x-2\right)}=10\)

<=> \(\frac{2x^2-4x}{\left(x-5\right)\left(x-2\right)}=10\)

<=> \(\frac{2x\left(x-2\right)}{\left(x-5\right)\left(x-2\right)}=10\)

<=> \(2x=10\left(x-5\right)\)

<=> 2x - 10x = -50

<=> -8x = -50

<=>x = 6,25

Vậy S = {6,25}

b) (x - 7)(x - 2)(x - 4)(x - 5) = 72

<=> (x2 - 9x + 14)(x2 - 9x + 20) = 72

Đặt x2 - 9x + 14 = t <=> t(t + 6) = 72

<=> t2 + 6t - 72 = 0

<=> t2 + 12t - 6t - 72 = 0

<=> (t + 12)(t - 6) = 0

<=> \(\orbr{\begin{cases}t+12=0\\t-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x^2-9x+14+12=0\\x^2-9x+14-6=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x-9x+20,25\right)+5,75=0\\x^2-9x+8=0\end{cases}}\)

<=> \(\orbr{\begin{cases}\left(x-4,5\right)^2+5,75=0\left(vn\right)\\x^2-x-8x+8=0\end{cases}}\)

<=> (x - 1)(x - 8) = 0

<=> \(\orbr{\begin{cases}x-1=0\\x-8=0\end{cases}}\)

<=> \(\orbr{\begin{cases}x=1\\x=8\end{cases}}\)

Vậy S = {1; 8}

20 tháng 1 2019

a) \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^4-2x^3+4x^3-8x^2+5x^2-10x+2x-4=0\)

\(\Leftrightarrow x^3\left(x-2\right)+4x^2\left(x-2\right)+5x\left(x-2\right)+2\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+4x^2+5x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x^3+x^2+3x^2+3x+2x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left[x^2\left(x+1\right)+3x\left(x+1\right)+2\left(x+1\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+3x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x^2+2x+x+2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left[x\left(x+2\right)+\left(x+2\right)\right]=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)\left(x+2\right)\left(x+1\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x+1\right)^2\left(x+2\right)=0\)

\(\Rightarrow x\in\left\{2;-1;-2\right\}\)

Vậy....

20 tháng 1 2019

c, \(2x^3+7x^2+7x+2=0\)

\(\Leftrightarrow2\left(x^3+1\right)+7x\left(x+1\right)=0\Leftrightarrow2\left(x+1\right)\left(x^2-x+1\right)+7x\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left[2\left(x^2-x+1\right)+7x\right]=0\)

\(\Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\Leftrightarrow\left(x+1\right)\left(x+2\right)\left(2x+1\right)=0\)

Tập nghiệm của pt: \(S=\left\{-1;-2;-\frac{1}{2}\right\}\)

b, \(\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\) (1)

Đặt: \(x^2-7=t\left(t\ge-7\right)\)

Khi đó (1) trở thành: \(\left(t+3\right)\left(t-3\right)=72\Leftrightarrow t^2-9=72\Leftrightarrow\orbr{\begin{cases}t=9\\t=-9\left(loai\right)\end{cases}}\)

\(t=9\Rightarrow x^2-7=9\Leftrightarrow x=\pm4\)

Tập nghiệm của pt là \(S=\left\{\pm4\right\}\)

a, \(x^4+2x^3-3x^2-8x-4=0\)

\(\Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\)

\(\Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\)

\(\Leftrightarrow\left(x+1\right)^2\left(x^2-4\right)=0\Leftrightarrow\orbr{\begin{cases}x=-1\\x=\pm2\end{cases}}\)

21 tháng 1 2019

\(a,x^4+2x^3-3x^2-8x-4=0\\ \Leftrightarrow x^4+x^3+x^3+x^2-4x^2-4x-4x-4=0\\ \Leftrightarrow x^3\left(x+1\right)+x^2\left(x+1\right)-4x\left(x+1\right)-4\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(x^3+x^2-4x-4\right)=0\\ \Leftrightarrow\left(x+1\right)\left[x^2\left(x+1\right)-4\left(x+1\right)\right]=0\\ \Leftrightarrow\left(x+1\right)\left(x+1\right)\left(x^2-4\right)=0\\ \Leftrightarrow\left(x+1\right)^2\left(x-2\right)\left(x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\x+2=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-2\\x=2\end{matrix}\right.\\ Vậy.....\)

\(b,\left(x-2\right)\left(x+2\right)\left(x^2-10\right)=72\\ \Leftrightarrow\left(x^2-4\right)\left(x^2-10\right)=72\\ \Leftrightarrow\left(x^2-7+3\right)\left(x^2-7-3\right)=72\\ \Leftrightarrow\left(x^2-7\right)^2-9=72\\ \Leftrightarrow\left(x^2-7\right)^2=81\\ \Rightarrow\left[{}\begin{matrix}x^2-7=9\\x^2-7=-9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\sqrt{2}\\x=\sqrt{-2}\left(vôlí\right)\end{matrix}\right.\\ Vậyx=\sqrt{2}\)

\(c,2x^3+7x^2+7x+2=0\\ \Leftrightarrow2x^3+2x^2+5x^2+5x+2x+2=0\\ \Leftrightarrow2x^2\left(x+1\right)+5x\left(x+1\right)+2\left(x+1\right)=0\\ \Leftrightarrow\left(x+1\right)\left(2x^2+5x+2\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+1=0\\2x^2+5x+2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=?\left(tựtính\right)\end{matrix}\right.\)