Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
số 8 trong dãy số trên thuộc dạng 800000 đọc là: tám trăm nghìn
t i c k nha!! 536457567586876968978987979578674
a) \(\left(x-3\right)^2-4=0\)
\(\left(x-3\right)^2=0+4\)
\(\left(x-3\right)^2=4\)
\(\left(x-3\right)^2=\pm4\)
\(\left(x-3\right)^2=\pm2^2\)
\(\orbr{\begin{cases}x-3=2\\x-3=-2\end{cases}}\)
\(\orbr{\begin{cases}x=5\\x=1\end{cases}}\)
b) \(\left(2x+3\right)^2-\left(2x+1\right)\left(2x-1\right)=22\)
\(4x^2+12x+9-4x^2+1=22\)
\(12x+10=22\)
\(12x=22-10\)
\(12x=12\)
\(x=1\)
c) \(\left(4x+3\right)\left(4x-3\right)-\left(4x-5\right)^2=16\)
\(16x^2-9-16x^2+40x-25=16\)
\(-34+40x=16\)
\(40x=16+34\)
\(40x=50\)
\(x=\frac{50}{40}=\frac{5}{4}\)
d) \(x^3-9x^2+27x-27=-8\)
\(x^3-9x^2+27x-27+8=0\)
\(x^3-9x^2+27x-19=0\)
\(\left(x^2-8x+19\right)\left(x-1\right)=0\)
Vì \(\left(x^2-8x+19\right)>0\) nên:
\(x-1=0\)
\(x=1\)
e) \(\left(x+1\right)^3-x^2\left(x+3\right)=2\)
\(x^3+2x^2+x+x^2+2x+1-x^2-3x^2=2\)
\(3x+1=2\)
\(3x=2-1\)
\(3x=1\)
\(x=\frac{1}{3}\)
b) ( 2x+3)^2 - (2x+1)(2x-1) =22
=> 4x2+12x+9-4x2+1=22
=> 12x=12
=>x=1
c) (4x+3)(4x-3) -(4x-5)^2 =16
=>16x2-9-16x2+40x-25=16
=>40x=50
=>x=4/5
a)\(\left(x-13\right)^2-4=0\\\left(x-13\right)^2=4\\ \left(x-13\right)^2=2^2\\ \Rightarrow\left\{{}\begin{matrix}x-13=2\\x-13=-2\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}15\\-11\end{matrix}\right.\)
vậy...
a) (x-2)(x-1) = x(2x+1) + 2
⇔ x2 - x - 2x + 2 = 2x2 + x + 2
⇔ x2 - 2x2 - x - 2x - x = 2 - 2
⇔ -x2 - 4x = 0
⇔ x(-x - 4) = 0
⇔\(\left[{}\begin{matrix}x=0\\-x-4=0\end{matrix}\right.\)
⇔\(\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
b) (x+2)(x+2) - (x-2)(x-2) = 8x
⇔ x2 + 2x + 2x + 4 - x2 + 2x + 2x - 4 = 8x
⇔ 8x = 8x
⇒ x có vô số nghiệm
c) (2x-1)(x2-x+1) = 2x3-3x2+2
⇔ 2x3 - 2x2 + 2x - x2 + x -1 = 2x3 - 3x2 + 2
⇔ 3x = 3
⇔ x = 1
d) (x+1)(x2+2x+4) - x3 - 3x2 + 16 = 0
⇔ x3 + 2x2 + 4x + x2 + 2x + 4 -x3 - 3x2 +16= 0
⇔ 6x + 20 = 0
⇔ x = \(-\frac{20}{6}\)
.e) (x+1)(x+2)(x+5) - x3-8x2=27
⇔ (x2 +2x + x+2)(x+5) -x3-8x2=27
⇔ (x2 + 3x + 2)(x+5)-x3 - 8x2 = 27
⇔ x3 + 5x2 + 3x2 + 15x + 2x + 10 - x3 - 8x2 =27
⇔ 17x = 17
⇔ x = 1
Bài 2: Tìm x
a) Ta có: (x-2)(x-1)=x(2x+1)+2
\(\Leftrightarrow x^2-3x+2=2x^2+x+2\)
\(\Leftrightarrow x^2-3x+2-2x^2-x-2=0\)
\(\Leftrightarrow-x^2-4x=0\)
\(\Leftrightarrow x^2+4x=0\)
\(\Leftrightarrow x\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-4\end{matrix}\right.\)
Vậy: S={0;-4}
b) Ta có: \(\left(x+2\right)\left(x+2\right)-\left(x-2\right)\left(x-2\right)=8x\)
\(\Leftrightarrow x^2+4x+4-\left(x^2-4x+4\right)-8x=0\)
\(\Leftrightarrow x^2+4x+4-x^2+4x-4-8x=0\)
\(\Leftrightarrow0x=0\)
Vậy: S={x|\(x\in R\)}
c) Ta có: \(\left(2x-1\right)\left(x^2-x+1\right)=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-2x^2+2x-x^2+x-1=2x^3-3x^2+2\)
\(\Leftrightarrow2x^3-3x^2+3x-1-2x^3+3x^2-2=0\)
\(\Leftrightarrow3x-3=0\)
\(\Leftrightarrow3x=3\)
hay x=1
Vậy: S={1}
d) Ta có: \(\left(x+1\right)\left(x^2+2x+4\right)-x^3-3x^2+16=0\)
\(\Leftrightarrow x^3+2x^2+4x+x^2+2x+4-x^3-3x^2+16=0\)
\(\Leftrightarrow6x+20=0\)
\(\Leftrightarrow6x=-20\)
hay \(x=-\frac{10}{3}\)
Vậy: \(S=\left\{-\frac{10}{3}\right\}\)
e) Ta có: \(\left(x+1\right)\left(x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow\left(x^2+3x+2\right)\left(x+5\right)-x^3-8x^2=27\)
\(\Leftrightarrow x^3+5x^2+3x^2+2x+10-x^3-8x^2=27\)
\(\Leftrightarrow2x=27-10=17\)
hay \(x=\frac{17}{2}\)
Vậy: \(S=\left\{\frac{17}{2}\right\}\)
\(\left(4-3x\right)\left(10x-5\right)=0\)
\(\Rightarrow\orbr{\begin{cases}4-3x=0\\10x-5=0\end{cases}\Rightarrow\orbr{\begin{cases}3x=4\\10x=5\end{cases}\Rightarrow}\orbr{\begin{cases}x=\frac{4}{3}\\x=\frac{1}{2}\end{cases}}}\)
\(\left(7-2x\right)\left(4+8x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}7-2x=0\\4+8x=0\end{cases}\Rightarrow\orbr{\begin{cases}2x=7\\8x=-4\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{7}{2}\\x=-\frac{1}{2}\end{cases}}}}\)
rồi thực hiện đến hết ...
Brainchild bé ngây thơ qus e , ko thực hiện đến hết như thế đc đâu :>
\(\left(x-3\right)\left(2x-1\right)=\left(2x-1\right)\left(2x+3\right)\)
\(2x^2-7x+3=4x^2+4x-3\)
\(2x^2-7x+3-4x^2-4x+3=0\)
\(-2x^2-11x+6=0\)
\(2x^2+11x-6=0\)
\(2x^2+12x-x-6=0\)
\(2x\left(x+6\right)-\left(x+6\right)=0\)
\(\left(x+6\right)\left(2x-1\right)=0\)
\(x+6=0\Leftrightarrow x=-6\)
\(2x-1=0\Leftrightarrow2x=1\Leftrightarrow x=\frac{1}{2}\)
\(3x-2x^2=0\)
\(x\left(2x-3\right)=0\)
\(x=0\)
\(2x-3=0\Leftrightarrow2x=3\Leftrightarrow x=\frac{3}{2}\)
Tự lm tiếp nha
Bài 2:
a, \(x^{16}-1=\left(x^8\right)^2-1^2\)
\(=\left(x^8-1\right)\left(x^8+1\right)\)
\(=\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\)
\(=\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\)
b, \(x^6-y^6=\left(x^3\right)^2-\left(y^3\right)^2\)
\(=\left(x^3-y^3\right)\left(x^3+y^3\right)\)
\(=\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2-xy+y^2\right)\)
Chúc bạn học tốt!!!
Bài 1:
a, \(4x^2-25-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5\right)-\left(2x-5\right)\left(2x+7\right)=0\)
\(\Rightarrow\left(2x-5\right)\left(2x+5-2x-7\right)=0\)
\(\Rightarrow2x-5=0\Rightarrow x=\dfrac{5}{2}\)
b, \(2x^3+3x^2-2x-3=0\)
\(\Rightarrow2x^3-2x^2+5x^2-5x+3x-3=0\)
\(\Rightarrow2x^2\left(x-1\right)+5x\left(x-1\right)+3\left(x-1\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x^2+5x+3\right)=0\)
\(\Rightarrow\left(x-1\right)\left(2x^2+2x+3x+3\right)=0\)
\(\Rightarrow\left(x-1\right)\left[2x\left(x+1\right)+3\left(x+1\right)\right]=0\)
\(\Rightarrow\left(x-1\right)\left(x+1\right)\left(2x+3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+1=0\\2x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-1\\x=-\dfrac{3}{2}\end{matrix}\right.\)
c, \(x^3+27+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+3x+9\right)+\left(x+3\right)\left(x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+3x+9+x-9\right)=0\)
\(\Rightarrow\left(x+3\right)\left(x^2+4x\right)=0\)
\(\Rightarrow x\left(x+3\right)\left(x+4\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x=0\\x+3=0\\x+4=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\x=-3\\x=-4\end{matrix}\right.\)
Chúc bạn học tốt!!!