\(\sqrt{x-2}\)- 5 =0

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 5 2021

\(x-2\sqrt{x-2}-5=0\)

\(\Leftrightarrow x-2-2\sqrt{x-2}+1-4=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1\right)^2-4=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-1-2\right)\left(\sqrt{x-2}-1+2\right)=0\)

\(\Leftrightarrow\left(\sqrt{x-2}-3\right)\left(\sqrt{x-2}+1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}\sqrt{x-2}-3=0\\\sqrt{x-2}+1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=11\\x\in\theta\end{cases}}}\)

12 tháng 5 2021

thank ~

11 tháng 6 2019

\(f,\sqrt{x^2-25}-\sqrt{x-5}=0\)

=> \(\sqrt{x^2-25}=\sqrt{x-5}\)

=>\(x^2-25=x-5\)

=>\(x^2-x=25-5=20\)

=>( đến đoạn này mình xin chịu )

11 tháng 6 2019

\(a,\sqrt{16x}=8\)

=>\(16x=8^2\)

=>\(16x=64\)

=>\(x=64:16=4\)

Vậy \(x\in\left\{4\right\}\)

\(b,\sqrt{x^2}=2x-1\)

=>\(x=2x-1\)

=>\(2x-x=1\)

=>\(x=1\)

Vậy \(x\in\left\{1\right\}\)

\(c,\sqrt{9.\left(x-1\right)}=21\)

=>\(9.\left(x-1\right)=21^2=441\)

=> \(x-1=441:9=49\)

=>\(x=49+1=50\)

Vậy \(x\in\left\{50\right\}\)

\(d,\sqrt{4\left(1-x\right)^2}-6=0\)

=>\(\sqrt{4\left(1-x\right)^2}=0+6=6\)

=> \(4\left(1-x\right)^2=6^2=36\)

=>\(\left(1-x\right)^2=36:4=9\)

=>\(1-x=\sqrt{9}=3\)

=>\(x=1-3=-2\)

Vậy \(x\in\left\{-2\right\}\)

\(g,\sqrt{9\left(2-3x\right)^2}=6\)

=> \(9.\left(2-3x\right)^2=6^2=36\)

=> \(\left(2-3x\right)^2=36:9=4\)

=> \(2-3x=\sqrt{4}=2\)

=>\(3x=2-2=0\)

=>\(x=0:3=0\)

Vậy \(x\in\left\{0\right\}\)

( còn các bài còn lại mình sẽ nghĩ tiếp , HS6-7 làm bài )

28 tháng 7 2020

d) \(\sqrt{x+1}+2=0\)( ko tìm đc )

e) \(9x^2=4\Leftrightarrow x^2=\frac{4}{9}\Leftrightarrow x=\pm\sqrt{\frac{4}{9}}\)

g) \(2x^2=\frac{9}{50}\Leftrightarrow x^2=\frac{9}{100}\Leftrightarrow x=\pm\sqrt{\frac{9}{100}}\)

28 tháng 7 2020

z) \(3-2x=1\Leftrightarrow2x=2\Leftrightarrow x=1\)

y) \(\Leftrightarrow\sqrt{x}\left(1-\sqrt{x}\right)=0\Leftrightarrow\left\{{}\begin{matrix}\sqrt{x}=0\\1-\sqrt{x}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

14 tháng 8 2017

I) xd mọi x

\(\sqrt{x^2-8x+16}+\sqrt{x^2-10x+25}=9\)

\(\sqrt{\left(x-4\right)^2}+\sqrt{\left(x-5\right)^2}=9=>\left|x-4\right|+\left|x-5\right|=9\)

\(\left[{}\begin{matrix}x< 4\Rightarrow4-x+5-x=>x=0\left(n\right)\\4\le x< 5\Rightarrow x-4+5-x=9\left(vn\right)\\x\ge5\Rightarrow x-4+x-5=9\Rightarrow x=9\left(n\right)\\\end{matrix}\right.\)

kết luận

\(\left[{}\begin{matrix}x=0\\x=9\end{matrix}\right.\)

11 tháng 8 2018

1.

\(a.\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)^2}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{\left(\sqrt{2}+1\right)^2}+\sqrt{\left(2-\sqrt{2}\right)^2}=\sqrt{2}+1+2-\sqrt{2}=3\)\(c.\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)

\(d.\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{\left(\sqrt{5}+1\right)^2}-\sqrt{\left(\sqrt{5}-1\right)^2}}{\sqrt{2}}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}=\dfrac{2}{\sqrt{2}}=\sqrt{2}\)

2.

\(a.x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(b.x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)( mạo danh sửa đề)

\(c.x-4=\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)\)

11 tháng 8 2018

\(1a.\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{5+2\sqrt{5}+1}+\sqrt{5-2\sqrt{5}+1}=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)

\(b.\sqrt{3+2\sqrt{2}}+\sqrt{6-4\sqrt{2}}=\sqrt{2+2\sqrt{2}+1}+\sqrt{4-2.2\sqrt{2}+2}=\sqrt{2}+1+2-\sqrt{2}=3\)\(c.\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{9+2.3\sqrt{2}+2}-\sqrt{9-2.3\sqrt{2}+2}=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)\(d.\sqrt{3+\sqrt{5}}-\sqrt{3-\sqrt{5}}=\dfrac{\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}}{\sqrt{2}}=\dfrac{\sqrt{5+2\sqrt{5}+1}-\sqrt{5-2\sqrt{5}+1}}{\sqrt{2}}=\dfrac{\sqrt{5}+1-\sqrt{5}+1}{\sqrt{2}}=\sqrt{2}\)\(2a.x-1=\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\)

\(b.x+5\sqrt{x}+6=x+2\sqrt{x}+3\sqrt{x}+6=\sqrt{x}\left(\sqrt{x}+2\right)+3\left(\sqrt{x}+2\right)=\left(\sqrt{x}+2\right)\left(\sqrt{x}+3\right)\)

\(c.x-4=\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)\)

16 tháng 5 2019

1/ \(\sqrt{x-2}-\sqrt{1-3x}=0\\ đk:\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

=> pt vô no

2/ \(\sqrt{15-x}+\sqrt{3-x}=6\\ đk\left\{{}\begin{matrix}15-x\ge0\\3-x\ge0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\le15\\x\le3\end{matrix}\right.\Leftrightarrow x\le3\)

\(pt\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow2\sqrt{\left(15-x\right)\left(3-x\right)}=2x+36\)

\(\Leftrightarrow4\left(15-x\right)\left(3-x\right)=\left(2x+18\right)^2\left(đk:x\ge-9\right)\)

\(\Leftrightarrow-144x=144\Leftrightarrow x=-1\left(nhan\right)\)

NV
16 tháng 5 2019

Câu 1: ĐKXĐ: \(\left\{{}\begin{matrix}x-2\ge0\\1-3x\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x\ge2\\x\le\frac{1}{3}\end{matrix}\right.\)

\(\Rightarrow\) Không tồn tại x thỏa mãn ĐKXĐ \(\Rightarrow\) pt vô nghiệm

Câu 2:

ĐKXĐ: \(x\le3\)

\(\Leftrightarrow15-x+3-x+2\sqrt{\left(15-x\right)\left(3-x\right)}=36\)

\(\Leftrightarrow x+9=\sqrt{x^2-18x+45}\) (\(x\ge-9\))

\(\Leftrightarrow x^2+18x+81=x^2-18x+45\)

\(\Leftrightarrow36x=-36\Rightarrow x=-1\)

Câu 3:

ĐKXĐ: \(x\ge1\)

\(\Leftrightarrow\sqrt{x-1}=2+\sqrt{x+1}\)

\(\Leftrightarrow x-1=4+x+1+4\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{x+1}=-\frac{3}{2}\)

Phương trình vô nghiệm

24 tháng 8 2017

a) \(\sqrt{3}x-\sqrt{12}=0< =>\sqrt{3}x=\sqrt{12}=>x=2\)

Vay S = { 2 }

b) \(\sqrt{2}x+\sqrt{2}=\sqrt{8}+\sqrt{18}< =>\sqrt{2}x=\sqrt{8}+\sqrt{18}-\sqrt{2}< =>\sqrt{2}x=2\sqrt{2}+3\sqrt{2}-\sqrt{2}\) <=> \(\sqrt{2}x=4\sqrt{2}=>x=4\)

Vay S = { 4 }

c) \(\sqrt{5}x^2-\sqrt{20}=0< =>\sqrt{5}x^2=\sqrt{20}< =>x^2=2=>x=\sqrt{2}\)

Vay S = {\(\sqrt{2}\) }

d) \(\sqrt{x^2+6x+9}=3x+6< =>\sqrt{\left(x+3\right)^2}=3x+6< =>x+3=3x+6< =>-2x=\) \(3=>x=-\dfrac{3}{2}\)

Vay S = { - 3/2 }

e) \(\sqrt{x^2-4x+4}-2x+5=0< =>\sqrt{\left(x-2\right)^2}-2x+5=0< =>x-2-2x+5=0\) <=> \(-x+3=0< =>-x=-3=>x=3\)

Vay S = { 3 }

F) \(\sqrt{\dfrac{2x-3}{x-1}}=2\)

<=> \(\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

Vay S = { 1/2 }

g) \(\dfrac{\sqrt{2x-3}}{\sqrt{x-1}}=2< =>\sqrt{\dfrac{2x-3}{x-1}}=2< =>\dfrac{2x-3}{x-1}=4< =>2x-3=4x-4< =>-2x=-1=>x=\dfrac{1}{2}\)

24 tháng 8 2017

bạn chưa có ĐKXĐ nên chưa xét kết quả có đúng vs Đk ko, có vài câu sai kết quả

6 tháng 4 2020

bạn giải theo delta nha :) mình vd một câu đó

\(1.x^2-11x+30=0\)

\(\Delta=\left(-11\right)^2-4.1.30=1>0\)

Do đó pt có 2 nghiệm phân biệt là:

\(x_1=\frac{11+\sqrt{1}}{2}=6;x_2=\frac{11-\sqrt{1}}{2}=5\)

6 tháng 4 2020

cảm ơn bạn

15 tháng 12 2019

chủ yếu là bình phương hai vế,đặt ĐK rồi chuyển thành phương trình bậc hai rồi giải

15 tháng 12 2019

1.\(ĐKXĐ:x\ge0\)

\(PT\Leftrightarrow x^2+x=x^2\Leftrightarrow x=0\)(t/m)

Vậy pt có nghiêm duy nhất là x=0

2.ĐKXĐ:\(1-x^2\ge0\Leftrightarrow-1\le x\le1\)

\(PT\Leftrightarrow1-x^2=x^2-2x+1\left(x\ge1\right)\)

\(\Leftrightarrow2x^2-2x=0\)

\(\Leftrightarrow2x\left(x-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai,vi,x\ge1\right)\\x=1\left(chon\right)\end{matrix}\right.\)

Vậy phương trình có nghiệm duy nhất là x=1

3.ĐKXĐ:\(x^2-4x+3\ge0\)

\(\sqrt{x^2-4x+3}=x-2\)

\(\Leftrightarrow x^2-4x+3=x^2-4x+4\left(x\ge2\right)\)

\(\Leftrightarrow0=1\left(Sai\right)\)

Vậy pt đã cho vô nghiệm

4.ĐKXĐ:\(x^2-1\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-1\\x\ge1\end{matrix}\right.\)

\(\sqrt{x^2-1}-x^2+1=0\)

\(\Leftrightarrow\sqrt{x^2-1}-\left(x^2-1\right)=0\)

\(\Leftrightarrow\sqrt{x^2-1}\left(1-\sqrt{x^2-1}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-1}=0\\1-\sqrt{x^2-1}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\pm1\left(tm\right)\\\sqrt{x^2-1}=1\left(\cdot\right)\end{matrix}\right.\)

Giải (*): \(\left(\cdot\right)\Leftrightarrow x^2-1=1\Leftrightarrow x^2=2\Leftrightarrow x=\pm\sqrt{2}\left(tm\right)\)

Kết luận: tập nghiệm của pt là:\(S=\left\{\pm1;\pm\sqrt{2}\right\}\)

5.ĐKXĐ:\(x^2-4\ge0\Leftrightarrow\left[{}\begin{matrix}x\le-2\\x\ge2\end{matrix}\right.\)

\(\sqrt{x^2-4}-x+2=0\)

\(\Leftrightarrow\sqrt{\left(x+2\right)\left(x-2\right)}-\left(x-2\right)=0\)

\(\Leftrightarrow\sqrt{x-2}\left(\sqrt{x+2}-\sqrt{x-2}\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x-2}=0\\\sqrt{x+2}-\sqrt{x-2}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\\sqrt{x+2}=\sqrt{x-2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x+2=x-2\Leftrightarrow2=-2\left(vo,li,nen,loai\right)\end{matrix}\right.\)

Vậy pt đã cho có nghiệm duy nhất là x=2

6.ĐKXĐ:\(1-2x^2\ge0\Leftrightarrow-\frac{\sqrt{2}}{2}\le x\le\frac{\sqrt{2}}{2}\)

\(\sqrt{1-2x^2}=x-1\)

\(\Leftrightarrow1-2x^2=x^2-2x+1\left(x\ge1\right)\)

\(\Leftrightarrow3x^2-2x=0\)

\(\Leftrightarrow x\left(3x-2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(loai\right)\\x=\frac{2}{3}\left(loai\right)\end{matrix}\right.\)

Kết luận: PT đã cho vô nghiệm