K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 10 2020

\(\left(x-2\right)^{x+2}=\left(x-2\right)^{x+4}\)

\(\left(x-2\right)^{x+2}-\left(x-2\right)^{x+2}.\left(x-2\right)^2=0\)

\(\left(x-2\right)^{x+2}.\left[1-\left(x-2\right)^2\right]=0\)

\(\Rightarrow\hept{\begin{cases}\left(x-2\right)^{x+2}=0\\1-\left(x-2\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x-2=0\\\left(x-2\right)^2=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\x-2=1\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=2\\x=3\end{cases}}\)

9 tháng 9 2018

a)\(-\frac{2}{5}+\frac{2}{3}x+\frac{1}{6}x=-\frac{4}{5}\Leftrightarrow\frac{5}{6}x=-\frac{2}{5}\Leftrightarrow x=-\frac{12}{25}\)
Vậy nghiệm là x = -12/25

b)\(\frac{3}{2}x-\frac{2}{5}-\frac{2}{3}x=-\frac{4}{15}\Leftrightarrow\frac{5}{6}x=\frac{2}{15}\Leftrightarrow x=\frac{4}{25}\)
Vậy nghiệm là x = 4/25

c)\(\frac{x+1}{10}+\frac{x+1}{11}+\frac{x+1}{12}=\frac{x+1}{13}+\frac{x+1}{14}\)\(\Leftrightarrow\left(x+1\right)\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\right)=0\)
\(\Leftrightarrow x+1=0\left(\frac{1}{10}+\frac{1}{11}+\frac{1}{12}-\frac{1}{13}-\frac{1}{14}\ne0\right)\)\(\Leftrightarrow x=-1\)
Vậy nghiệm là x = -1
 

9 tháng 9 2018

Cảm ơn bạnh nha. Chúc bạn buổi tối ấm =)))) <3

1 tháng 8 2019

\(\left|x\right|=7\)

\(\Rightarrow\orbr{\begin{cases}x=7\\x=-7\end{cases}}\)

Vậy \(x\in\left\{\pm7\right\}\)

1 tháng 8 2019

\(\left|x\right|=0\)

\(\Rightarrow x=0\)

Vậy x = 0

16 tháng 9 2018

theo đề bài ta có : x/5=y/3

                         suy ra  x2/25=y2/9

áp dụng tích chất tỉ lệ thức ta có :

x2/25=y2/9=x2-y2/25-9=4/16=1/4

x2/25=1/4 suy ra x2=1/4.25 suy ra x2=25/4 suy ra x=+-5/2

y2/9 =1/4 suy ra y2=1/4.9 suy ra y2=9/4 suy ra y=+-3/2

mà x,y cùng dấu  nên x=5/2 va y=3/2 

                          hoac x=-5/2 va y =-3/2       

16 tháng 9 2018

ta có x,y tỉ lệ với 5,3

=>\(\frac{x}{5}=\frac{y}{3}\)

=>\(\frac{x^2}{25}=\frac{y^2}{9}\)

Lại có x2-y2=4

Áp dụng t/c của dãy tỉ số bằng nhau ta có

\(\frac{x^2}{25}=\frac{y^2}{9}=\frac{x^2-y^2}{25-9}=\frac{4}{16}=\frac{1}{4}\)

=> x\(\frac{25}{4}\)=> \(x=\pm\frac{5}{2}\)

y2=\(\frac{9}{4}\Rightarrow y=\pm\frac{3}{2}\)

5 tháng 11 2017

a)Ta có: \(14x=12y\Rightarrow\frac{x}{12}=\frac{y}{14}=\frac{x-y}{12-14}=\frac{-10,2}{-2}=5,1\)

\(\Rightarrow x=5,1.12=61,2\)

     \(y=5,1.14=71,4\)

b) Ta có: \(\left(x-5\right)^{2016}-\left|y^2-4\right|=0\)

\(\Rightarrow\orbr{\begin{cases}\left(x-5\right)^{2016}=0\\y^2-4=0\end{cases}\Rightarrow\orbr{\begin{cases}x-5=0\\y^2=4\end{cases}\Rightarrow}\orbr{\begin{cases}x=5\\y=\pm2\end{cases}}}\)

Vậy....

29 tháng 8 2016

TA CÓ 1024=2^10

SUY RA X=0 

26 tháng 12 2016

\(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)

Có \(\left|x+\frac{5}{2}\right|\ge0\)với mọi x

\(\left|\frac{2}{5}-x\right|\ge0\)với mọi x

=> Để \(\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\)=> \(\hept{\begin{cases}\left|x+\frac{5}{2}\right|=0\\\left|\frac{2}{5}-x\right|=0\end{cases}}\)

=> \(\hept{\begin{cases}x+\frac{5}{2}=0\\\frac{2}{5}-x=0\end{cases}}\)

=> \(\hept{\begin{cases}x=-\frac{5}{2}\\x=\frac{2}{5}\end{cases}}\)(Không thỏa mãn vì x không thể đồng thời nhận 2 giá trị)

=> Không có giá trị nào của x thỏa mãn đề bài

=> Số giá trị của x là 0

26 tháng 12 2016

\(\left|x+\frac{5}{2}\right|\ge0\) và \(\left|\frac{2}{5}-x\right|\ge0\)

\(\Rightarrow\left|x+\frac{5}{2}\right|+\left|\frac{2}{5}-x\right|=0\Leftrightarrow\hept{\begin{cases}x+\frac{5}{2}=0\\\frac{2}{5}-x=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-\frac{5}{2}\\x=\frac{2}{5}\end{cases}}}\)

Vậy x có 2 giá trị.

31 tháng 3 2019

Chứng minh đa thức  P(x) = 2(x-3)^2 + 5    không có nghiệm nha mấy chế
Tui viết sai đề :v

31 tháng 3 2019

a) Ta có no của đa thức f(x) = 0

                        \(\Leftrightarrow\frac{3}{2}x-\frac{1}{4}=0\)

                        \(\Leftrightarrow\frac{3}{2}x=\frac{1}{4}\)

                       \(\Leftrightarrow x=\frac{1}{6}\)

Vậy no của đa thức f(x)=0 \(\Leftrightarrow x=\frac{1}{6}\)

b) Ta có no của đa thức g(x) = 0

                  \(\Leftrightarrow2x^2-x=0\)

                  \(\Leftrightarrow x.\left(2x-1\right)=0\)

               \(\Leftrightarrow\orbr{\begin{cases}x=0\\2x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=0\\2x=1\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=0\\x=\frac{1}{2}\end{cases}}}\)

Vậy no của đa thức g(x) = 0 \(\Leftrightarrow x\in\left\{0;\frac{1}{2}\right\}\)