K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

31 tháng 7 2018

=> x3-6x2+12x-8-(x3-27) + 6(x2+2x+1) = 49

=> >x3 -6x2+12x-8-x3+27+6x2+12x+6=49

=>24x+25=49

<=>24x=24

<=>x=1

Xong rồi đó dòng thứ 2 do chị đang bận nên em tự hiểu là dấu mũ nha

31 tháng 7 2018

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

\(\Rightarrow x^3-3x^22+3x2^2-2^3-x^3+3^3+6\left(x^2+2x+1\right)=49\)

\(\Rightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

\(\Rightarrow24x+25=49\)

\(\Rightarrow24x=49-25=24\)

\(\Rightarrow x=1\)

10 tháng 9 2018

b)(x-2)3-(x-3)(x2+3x+9)+6(x+1)2=49

(=) x3- 6x2 +12 x -8 - ( x3 - 27 ) + 6( x2 + 2x +1)

(=) x3 - 6x2 +12x -8 - x3 +27 + 6x2 +12x +6

(=) 24x + 25 = 49

(=) 24x = 49 - 25 = 24

(=) x = 24/24 =1

18 tháng 10 2019

\(a,\left(x+1\right)^2=x+1\)

\(\left(x+1\right)^2-\left(x+1\right)=0\)

\(\left(x+1\right)\cdot\left(x+1-1\right)=0\)

\(x\cdot\left(x+1\right)=0\)

\(\hept{\begin{cases}x=0\\x+1=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=-1\end{cases}}}\)

18 tháng 10 2019

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)

\(\Leftrightarrow x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

\(\Leftrightarrow24x+25=49\)

\(\Leftrightarrow24x=24\Leftrightarrow x=1\)

22 tháng 6 2015

(x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)= 49

<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=49

<=>x3-6x2+12x-8-x3+27+6x2+12x+6=49

<=>24x+25=49

<=>24x=24

<=>x=1

x(x + 5)(x - 5) - (x + 2)(x2 - 2x + 4) = 42

<=>x(x2-25)-(x3+8)=42

<=>x3-25x-x3-8=42

<=>-25x-8=42

<=>-25x=50

<=>x=-2

 

13 tháng 4 2017

2 nha !!!

k nha !!!

17 tháng 8 2017

(x - 2)3 - (x - 3)(x2 + 3x + 9) + 6(x + 1)2 = 49

<=>x3-6x2+12x-8-(x3-27)+6(x2+2x+1)=49

<=>x3-6x2+12x-8-x3+27+6x2+12x+6=49

<=>24x+25=49

<=>24x=24

<=>x=1 x(x + 5)(x - 5) - (x + 2)(x2 - 2x + 4) = 42

<=>x(x2-25)-(x3+8)=42

<=>x3-25x-x3-8=42

<=>-25x-8=42

<=>-25x=50

<=>x=-2

17 tháng 8 2017

\(\left(x-2\right)^3-\left(x-3\right)\left(x^2+3x+9\right)+6\left(x+1\right)^2=49\)

<=>\(\left(x^3-6x^2+12x-8\right)-\left(x^3-27\right)+6\left(x^2+2x+1\right)=49\)

<=>\(x^3-6x^2+12x-8-x^3+27+6x^2+12x+6=49\)

<=>24x+25=49 <=> 24x=24 <=> x=1

22 tháng 7 2017

1. \(125x^3+y^6=\left(5x\right)^3+\left(y^2\right)^3\)

\(=\left(5x+y^2\right)\left[\left(5x\right)^2-5x.y^2+\left(y^2\right)^2\right]\)

\(=\left(5x+y^2\right)\left(25x^2-5xy^2+y^4\right)\)

2. \(4x\left(x-2y\right)+8y\left(2y-x\right)\)

\(=4x\left(x-2y\right)-8y\left(x-2y\right)\)

\(=\left(x-2y\right)\left(4x-8y\right)\)

3. \(25\left(x-y\right)^2-16\left(x+y\right)^2\)

\(=\left[5\left(x-y\right)\right]^2-\left[4\left(x+y\right)\right]^2\)

\(=\left[5\left(x-y\right)-4\left(x+y\right)\right]\left[5\left(x-y\right)+4\left(x+y\right)\right]\)

\(=\left(5x-5y-4x-4y\right)\left(5x-5y+4x+4y\right)\)

\(=\left(x-9y\right)\left(9x-y\right)\)

4. \(x^4-x^3-x^2+1\)

\(=x^3\left(x-1\right)-\left(x^2-1\right)\)

\(=x^3\left(x-1\right)-\left(x-1\right)\left(x+1\right)\)

\(=\left(x-1\right)\left(x^3-x-1\right)\)

5. \(a^3x-ab+b-x\)

\(=a^3x-x-ab+b\)

\(=x\left(a^3-1\right)-b\left(a-1\right)\)

\(=x\left(a-1\right)\left(a^2+a+1\right)-b\left(a-1\right)\)

\(=\left(a-1\right)\left[x\left(a^2+a+1\right)-b\right]\)

6. \(x^3-64=x^3-4^3\)

\(=\left(x-4\right)\left(x^2+4x+16\right)\)

7. \(0,125\left(a+1\right)^3-1\)

\(=\left[0,5\left(a+1\right)\right]^3-1^3\)

\(=\left[0,5\left(a+1\right)-1\right]\left\{\left[0,5\left(a+1\right)\right]^2+\left[0,5\left(a+1\right).1\right]+1^2\right\}\)

\(=\left[0,5\left(a+1-2\right)\right]\left[0,25a^2+0,5a+0,25+0,5a+0,5+1\right]\)

\(=\left[0,5\left(a-1\right)\right]\left(0,25a^2+a+1,75\right)\)

8. \(9\left(x+5\right)^2-\left(x-7\right)^2\)

\(=\left[3\left(x+5\right)\right]^2-\left(x-7\right)^2\)

\(=\left(3x+15-x+7\right)\left(3x+15+x-7\right)\)

\(=\left(2x+22\right)\left(4x+8\right)\)

9. \(49\left(y-4\right)^2-9\left(y+2\right)^2\)

\(=\left[7\left(y-4\right)\right]^2-\left[3\left(y+2\right)\right]^2\)

\(=\left(7y-28-3y-6\right)\left(7y-28+3y+6\right)\)

\(=\left(4y-34\right)\left(10y-22\right)\)

10. \(x^2y+xy^2-x-y=xy\left(x+y\right)-\left(x+y\right)\)

\(=\left(x+y\right)\left(xy-1\right)\)

11. \(x^3+3x^2+3x+1-27z^3\)

\(=\left(x+1\right)^3-\left(3z\right)^3\)

\(=\left(x+1-3z\right)\left(x^2+2x+1+3xz+3z+9z^2\right)\)

12. \(x^2-y^2-x+y=\left(x-y\right)\left(x+y\right)-\left(x-y\right)\)

\(=\left(x-y\right)\left(x+y-1\right)\)

4 tháng 8 2019

\(\frac{3}{x+1}+\frac{2}{x+2}=\frac{5x+4}{x^2+3x+2}.\)ĐKXĐ: \(x\ne-1;-2\)

\(\Leftrightarrow\frac{3\left(x+2\right)}{\left(x+1\right)\left(x+2\right)}+\frac{2\left(x+1\right)}{\left(x+1\right)\left(x+2\right)}=\frac{5x+4}{\left(x+1\right)\left(x+2\right)}\)

\(\Leftrightarrow3x+6+2x+2=5x+4\)

\(\Leftrightarrow3x+2x-5x=-6-2+4\)

\(\Leftrightarrow0x=-4\)

=> PT vô nghiệm 

\(2;\frac{2}{3x-1}-\frac{15}{6x^2-x-1}=\frac{3}{2x-1}\)

\(\Leftrightarrow\frac{2\left(2x-1\right)}{\left(2x-1\right)\left(3x-1\right)}-\frac{15}{6x^2+3x-2x-1}=\frac{3\left(3x-1\right)}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow\frac{4x-2-15}{\left(2x-1\right)\left(3x-1\right)}=\frac{9x-3}{\left(2x-1\right)\left(3x-1\right)}\)

\(\Leftrightarrow4x-2-15=9x-3\)

\(\Leftrightarrow4x-9x=2+15-3\)

\(\Leftrightarrow-5x=14\)

.....

4 tháng 8 2019

mấy cái này mẫu nào dài cậu phân tích ra : 

VD : câu  3 : \(3x^2-4x+1\)

\(=3x^2-3x-x+1\)

\(=3x\left(x-1\right)-\left(x-1\right)\)

\(=\left(3x-1\right)\left(x-1\right)\)

r bắt đầu giải PHương trình :)) Mấy câu còn lại tương tự 

6 tháng 8 2018

Bạn viết đề kiểu gì thế?

a: =>\(x^3+8-x^3-2x=15\)

=>2x=-7

hay x=-7/2

c: =>(5x-3)(5x+3)=0

=>x=3/5 hoặc x=-3/5

d: =>\(x^2+8x+16-x^2+1=16\)

=>8x+1=0

hay x=-1/8

17 tháng 8 2016

1/ -3x+ 3x2

26 tháng 7 2017

1.

(x + 3)3 - x(3x + 1)2 + (2x + 1)(4x2 - 2x + 1) - 3x2 = 54

x3 + 9x2 + 27x + 27 - x(9x2 + 6x + 1) + 8x3 + 1 - 3x2 = 54

9x3 + 6x2 + 27x - 9x3 - 6x2 - x

= 54 - 27 - 1

26x = 26

x = 1