K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 11 2021

(x + 2)2 - 2x - 4 = 0

<=> (x + 2)2 - 2(x + 2) = 0

<=> (x + 2)(x + 2 - 2) = 0

<=> x(x + 2) = 0

<=> \(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)

12 tháng 1 2017

1. \(\left(x-4\right)^2-25=0\)

<=> (x-4+5).(x-4-5) = 0

<=> (x+1)(x-9) = 0

<=> \(\left[\begin{matrix}x+1=0\\x-9=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\x=9\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = {-1;9}

2. \(\left(2x-1\right)^2+\left(2-x\right)\left(2x-1\right)=0\)

<=> (2x-1)(2x-1+2-x) = 0

<=> (2x-1)(x+1) = 0

<=> \(\left[\begin{matrix}2x-1=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}2x=1\\x=-1\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=0.5\\x=-1\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = {-1 ; 0,5}

3. \(x^2+6x+9=4x^2\)

<=> \(\left(x+3\right)^2-4x^2=0\)

<=> (x+3+2x)(x+3-2x) = 0

<=> (3x+3)(3-x) = 0

<=> \(\left[\begin{matrix}3x+3=0\\3-x=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}3x=-3\\x=3\end{matrix}\right.\Leftrightarrow}\left[\begin{matrix}x=-1\\x=3\end{matrix}\right.\) Vậy phương trình có tập nghiệm S = {-1 ; 3}

4. (2x-5)(x+11) = (5-2x)(2x+1)

<=> (2x-5)(x+11) = - (2x-5)(2x+1)

<=> x + 11 = -2x - 1

<=> x+2x = -12

<=> 3x = -12

<=> x = -4

Vậy phương trình có một nghiệm duy nhất là x = -4

5. \(2x^2+5x+3=0\)

<=> \(2x^2+2x+3x+3=0\)

<=> \(2x\left(x+1\right)+3\left(x+1\right)=0\)

<=> \(\left(x+1\right)\left(2x+3\right)=0\)

<=> \(\left[\begin{matrix}x+1=0\\2x+3=0\end{matrix}\right.\Leftrightarrow\left[\begin{matrix}x=-1\\2x=-3\end{matrix}\right.\Leftrightarrow}\left[\begin{matrix}x=-1\\x=\frac{-3}{2}\end{matrix}\right.\) Vậy phương trình có tập nghiệm S = { -1 ; -3/2 }

12 tháng 1 2017

1) (x-4)^2-25=0

<=> (x-4+5)(x-4-5)=0

\(\Leftrightarrow\left[\begin{matrix}x=-1\\x=9\end{matrix}\right.\)

2) (2x-1)2+(2-x)(2x-1)=0

<=> (2x-1)(2+2-x)=0

<=> \(\left[\begin{matrix}x=\frac{1}{2}\\x=4\end{matrix}\right.\)

3) x^2+6x+9=4x^2

<=> 3x^2 -6x-9=0

<=> x^2 -2x -3=0

<=> x^2 -3x+x-3=0

<=> x(x-3)+(x-3)=0

<=> (x-3)(x+1)=0

=>\(\left[\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

4) (2x-5)(x+11)=(5-2x)(2x+1)

-(5-2x)(x+11)-(5-2x)(2x+1)=0

(5-2x)(x+11+2x+1)=0

=>\(\left[\begin{matrix}x=\frac{5}{2}\\x=-4\end{matrix}\right.\)

5)2x^2+5x+3=0

2x^2+2x+3x+3=0

2x(x+1)+3(x+1)=0

(x+1)(2x+3)=0

=>\(\left[\begin{matrix}x=-1\\x=\frac{-3}{2}\end{matrix}\right.\)

4 tháng 9 2015

bn vào câu hỏi tương tự tham khảo cách lm nhé

4 tháng 9 2015

vào câu hỏi tương tự

19 tháng 2 2019

1) \(\left(5x-4\right)\left(4x+6\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}5x-4=0\\4x-6=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}5x=4\\4x=6\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{4}{5}\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{4}{5};\dfrac{3}{2}\right\}\)

2) \(\left(4x-10\right)\left(24+5x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}4x-10=0\\24+5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}4x=10\\5x=-24\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{2}\\x=\dfrac{-24}{5}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{\dfrac{5}{2};\dfrac{-24}{5}\right\}\)

3) \(\left(x-3\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\2x=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{-1}{2}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{3;\dfrac{-1}{2}\right\}\)

3 tháng 9 2016

trời đất, học hằng đẳng thức chưa, chưa hc thì thôi, học rồi thì áp dụng vs bài này như ăn cháo thôi chứ có j đâu phải hỏi

4 tháng 12 2018

Câu e) là: 2x3 + 6x2 = x2 + 3x nhé

4 tháng 12 2018

a) \(2x\left(x-3\right)+5\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+5=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\2x=-5\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{5}{2}\end{matrix}\right.\)

b) \(\left(x^2-4\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2\right)-\left(x-2\right)\left(3-2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x+2-3+2x\right)=0\)

\(\Rightarrow\left(x-2\right)\left(3x-1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\3x-1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\3x=1\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{1}{3}\end{matrix}\right.\)

c) \(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Rightarrow\left(2x+5\right)^2-\left(x+2\right)^2=0\)

\(\Rightarrow\left(2x+5-x-2\right)\left(2x+5+x+2\right)=0\)

\(\Rightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\3x=-7\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-3\\x=-\dfrac{7}{3}\end{matrix}\right.\)

d) \(x^2-5x+6=0\)

\(\Rightarrow x^2-2x-3x+6=0\)

\(\Rightarrow x\left(x-2\right)-3\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\x-3=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

e) \(2x^3+6x^2=x^2+3x\)

\(\Rightarrow2x^3+6x^2-x^2-3x=0\)

\(\Rightarrow2x^3+5x^2-3x=0\)

\(\Rightarrow x\left(2x^2+5x-3\right)=0\)

\(\Rightarrow2x^2+5x-3=0\)

\(\Rightarrow2x^2-6x+x-3=0\)

\(\Rightarrow2x\left(x-3\right)+\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(2x+1\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\2x+1=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x=-\dfrac{1}{2}\end{matrix}\right.\)

f) \(\left(x^2-1\right)\left(x+2\right)-\left(x-2\right)\left(x^2+2x+4\right)-2x^2\)

\(\Rightarrow\left(x^2-1\right)\left(x+2\right)-\left(x^3-8\right)-2x^2=0\)

\(\Rightarrow x^3+2x^2-x+2-x^3+8-2x^2=0\)

\(\Rightarrow-x+10=0\)

\(\Rightarrow x=10\)

12 tháng 2 2019

a)\(\left(2x+5\right)^2=\left(x+2\right)^2\)

\(\Leftrightarrow4x^2+20x+25=x^2+4x+4\)

\(\Leftrightarrow4x^2-x^2+20x-4x=4-25\)

\(\Leftrightarrow3x^2+16x=-21\)

\(\Leftrightarrow3x^2+16x+21=0\)

\(\Leftrightarrow3x^2+9x+7x+21=0\)

\(\Leftrightarrow3x\left(x+3\right)+7\left(x+3\right)=0\)

\(\Leftrightarrow\left(x+3\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x+3=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-3\\x=\dfrac{-7}{3}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{-3;\dfrac{-7}{3}\right\}\)

e)\(\left(x-2\right)\left(2x-3\right)=\left(4-2x\right)\left(x-2\right)\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3\right)-\left(4-2x\right)\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(2x-3-4+2x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(4x-7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\4x-7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{7}{4}\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S=\(\left\{2;\dfrac{7}{4}\right\}\)

g)\(4x^2-1=\left(2x+1\right)\left(3x-5\right)\)

\(\Leftrightarrow\left(2x-1\right)\left(2x+1\right)-\left(2x+1\right)\left(3x-5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(2x-1-3x+5\right)=0\)

\(\Leftrightarrow\left(2x+1\right)\left(4-x\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}2x+1=0\\4-x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-1}{2}\\4\end{matrix}\right.\)

Vậy phương trình có tập nghiệm S = \(\left\{4;\dfrac{-1}{2}\right\}\)

8 tháng 12 2019

\(2x\left(x^2-25\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x=0\\x^2-25=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=0\\x=\pm5\end{cases}}\)

\(2x\left(3x-5\right)+\left(3x-5\right)=0\)

\(\left(2x+1\right)\left(3x-5\right)=0\)

\(\Rightarrow\orbr{\begin{cases}2x+1=0\\3x-5=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-\frac{1}{2}\\x=\frac{5}{3}\end{cases}}\)

8 tháng 12 2019

\(9\left(3x-2\right)-x\left(2-3x\right)=0\)

\(9\left(3x-2\right)+x\left(3x-2\right)=0\)

\(\left(9+x\right)\left(3x-2\right)=0\)

\(\Rightarrow\orbr{\begin{cases}9+x=0\\3x-2=0\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=-9\\x=\frac{2}{3}\end{cases}}\)

\(\left(2x-1\right)^2=25\)

\(\Rightarrow\orbr{\begin{cases}2x-1=5\\2x-1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=3\\x=-2\end{cases}}\)

14 tháng 8 2020

a) 16x^2 - (4x - 5)^2 = 15

<=> 16x^2 - 16x^2 + 40x - 25 = 15

<=> 40x = 40

<=> x = 1

b) (2x + 3)^2 - 4(x - 1)(x + 1) = 49

<=> 4x^2 + 12x + 9 - 4x^2 - 4x + 4x + 4 = 49

<=> 12x + 13 = 49

<=> 12x = 36

<=> x = 3

c) (2x + 1)(1 - 2x) + (1 - 2x)^2 = 18

<=> 1 - 4x^2 + 1 - 4x + 4x^2 = 18

<=> 2 - 4x = 18

<=> -4x = 16

<=> x = -4

d)2(x + 1)^2 - (x - 3)(x + 3) - (x - 4)^2 = 0

<=> 2x^2 + 4x + 2 - x^2 + 3^2 - x^2 + 8x - 16 = 0

<=> 12x - 5 = 0

<=> 12x = 5

<=> x = 5/12

e) (x - 5)^2 - x(x - 4) = 9

<=> x^2 - 10x + 25 - x^2 + 4x = 9

<=> -6x + 25 = 9

<=> -6x = 9 - 25

<=> -6x = -16

<=> x = -16/-6 = 8/3

f) (x - 5)^2 + (x - 4)(1 - x) = 0

<=> x^2 - 10x + 25 + x - x^2 - x - 4 + 4x = 0

<=> -5x + 21 = 0

<=> -5x = -21

<=> x = 21/5

4 tháng 12 2018

Bài 1:

a) \(x^2+9y^2-y^4-6xy\)

\(=\left(x^2-6xy+9y^2\right)-y^4\)

\(=\left[x^2-2.x.3y+\left(3y\right)^2\right]-\left(y^2\right)^2\)

\(=\left(x-3y\right)^2-\left(y^2\right)^2\)

\(=\left(x-3y-y^2\right)\left(x-3y+y^2\right)\)

b) \(2x^2-x-28\)

\(=2x^2-8x+7x-28\)

\(=2x\left(x-4\right)+7\left(x-4\right)\)

\(=\left(x-4\right)\left(2x+7\right)\)

Bài 2:

a) \(2x\left(x^2-2x+3\right)-2x^3\)

\(=2x\left(x^2-2x+3-x^2\right)\)

\(=2x\left(3-2x\right)\)

b) \(2x\left(x-3\right)-\left(x+5\right)\left(2x-1\right)\)

\(=\left(2x^2-6x\right)-\left(2x^2+9x-5\right)\)

\(=2x^2-6x-2x^2-9x+5\)

\(=-15x+5\)

\(=-5\left(3x-1\right)\)

c) \(\left(5-x\right)^2+\left(x+5\right)^2-\left(2x+10\right)\left(x-5\right)\)

\(=\left(x-5\right)^2-2\left(x+5\right)\left(x-5\right)+\left(x+5\right)^2\)

\(=\left[\left(x-5\right)-\left(x+5\right)\right]^2\)

\(=\left(x-5-x-5\right)^2\)

\(=\left(-10\right)^2=100\)

Bài 3:

a) \(x-2=\left(x-2\right)^2\)

\(\Rightarrow\left(x-2\right)-\left(x-2\right)^2=0\)

\(\Rightarrow\left(x-2\right)\left(1-x+2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(3-x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\3-x=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=2\\x=3\end{matrix}\right.\)

b) \(\left(-3x+9\right)x^2-7x+21=0\)

\(\Rightarrow-3\left(x-3\right)x^2-7\left(x-3\right)=0\)

\(\Rightarrow\left(x-3\right)\left(-3x^2-7\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-3=0\\-3x^2-7=0\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=3\\x^2=-\dfrac{7}{3}\end{matrix}\right.\)

Mà x2 > 0 hoặc x2 = 0 với mọi x

=> x2 = -7/3 không thỏa mãn

=> x= 3

4 tháng 12 2018

Phân tích đa thức

a, x^2+9y^2-y^4-6xy

=(x^2-6xy+9y^2)-y^4

=(x-3y)^2-y^4

=(x-3y-y^2)(x-3y+y^2)

b, 2x^2-x-28

=(2x^2-8x)+(7x-28)

=2x(x-4)+7(x-4)

=(x-4)(2x+7)

Rút gọn

a,2x(x^2-2x+3)-2x^3

=2x(x^2-2x+3-x^2)

=2x(-2x+3)

b,2x(x-3)-(x+5)(2x-1)

=2x^2-6x-2x^2-9x+5

=-15x+5

=-5(3x-1)

c,(5-x)^2+(x+5)^2-(2x+10)(x-5)

Ta có:(5-x)^2=(x-5)^2

=(x-5)^2-2(x+5)(x-5)+(x+5)^2

=(x-5-x-5)^2

=100

Tìm x

a,x-2=(x-2)^2=0

=>x-2=0=>x=2

b,(-3x+9)x^2-7x+21=0

=>-3(x-3)x^2-7(x-3)=0

=>(x-3)(-3x^2-7)=0

=>\(\left[{}\begin{matrix}x-3=0=>x=3\\-3x^2-7=0=>x=\sqrt{\dfrac{-7}{3}}\end{matrix}\right.\)