Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
17) \(\left(x^2-11x+30\right)\left(x^2-13x+30\right)=24x^2\)
\(\left(x-11+\frac{30}{x}\right)\left(x-13+\frac{30}{x}\right)=24\)
\(t\left(t-2\right)=24\)
\(\left(t-1\right)^2=25\)
t =6 hoặc t =-4
+\(\left(x-11+\frac{30}{x}\right)=6\Leftrightarrow x^2-11x+30=6x\Leftrightarrow x^2-17x+30=0\)
+\(\left(x-11+\frac{30}{x}\right)=-4\)
đừng tin Tên đẹp thật
cậu ta lừa bn lik e rùi ko giải đâu
\(63x^2-65x-8=0\)
Ta có: \(\Delta=65^2+4.8.63=6241\)
Vậy pt có 2 nghiệm:
\(x_1=\frac{65+\sqrt{6241}}{126}\);\(x_2=\frac{65-\sqrt{6241}}{126}\)
\(63x^2-65x-8=0\)
\(63x^2-72x+7x-8=0\)
\(9x\cdot\left(7x-8\right)+7x-8=0\)
\(\left(7x-8\right)\cdot\left(9x+1\right)=0\)
\(\orbr{\begin{cases}7x-8=0\\9x+1=0\end{cases}\Rightarrow\orbr{\begin{cases}x=\frac{8}{7}\\x=-\frac{1}{9}\end{cases}}}\)
\(\left(x-2\right)\left(x+2\right)\left(x^2+2^2\right)\left(x^4+2^4\right)\left(x^8+2^8\right)-x^{16}\)
\(=\left(x^2-2^2\right)\left(x^2+2^2\right)\left(x^4+2^4\right)\left(x^8+2^8\right)-x^{16}\)
\(=\left(x^4-2^4\right)\left(x^4+2^4\right)\left(x^8+2^8\right)-x^{16}\)
\(=\left(x^8-2^8\right)\left(x^8+2^8\right)-x^{16}\)
\(=\left(x^{16}-2^{16}\right)-x^{16}\)
\(=x^{16}-2^{16}-x^{16}\)
\(\left(-2\right)^{16}=65536\)
3. ( 22 + 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 22 - 1 ).( 22 + 1 ).( 24 + 1 ).( 28 + 1 )....( 264 + 1 ) + 1
= ( 24 - 1 ).( 24 + 1 ).( 28 + 1 )......( 264 + 1 ) + 1
= ( 28 + 1 ).....( 264 + 1 ) + 1
= ( 264 - 1 ).( 264 + 1 ) + 1
= 2128 - 1 + 1
= 2128
8.( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 32 - 1 ).( 32 + 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 34 - 1 ).( 34 + 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 38 - 1 ).( 38 + 1 )....( 3128 + 1 ) + 1
= ( 316 - 1 )......( 3128 + 1 ) + 1
= ( 3128 - 1 ).( 3128 + 1 ) + 1
= 3256 - 1 + 1
= 3256
\(A=\left(x-2\right)^2+\left(x+3\right)^2-2\left(x+1\right)\left(x-1\right).\)
\(A=x^2-4x+4+x^2+6x+9-2\left(x^2-1\right)\)
\(A=x^2-4x+4+x^2+6x+9-2x^2+2\)
\(A=2x+15\)
[(x+2)(x+8)].(x2+8x+16)=63x2
=> (x2+10x+16).(x2+8x+16)=63x2
Dat x2+9x+16=a nen : (a+x)(a-x)=63x2
=> a2-x2-63x2=0
=> a2-64x2=0
=> (a-8x).(a+8x)=0
=> \(\left\{{}\begin{matrix}a-8x=0\\a+8x=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}a=8x\\a=-8x\end{matrix}\right.\)
Voi a=8x thi : x2+9x+16=8x
=> x2+x+16=0
Vi x2+x+16>0 => pt vo nghiem
Voi a=-8x thi : x2+9x+16=-8x
=> x2+17x+16=0
=> x2+x+16x+16=0
=> (x+1)(x+16)=0
=> \(\left\{{}\begin{matrix}x+1=0\\x+16=0\end{matrix}\right.\)
=> \(\left\{{}\begin{matrix}x=-1\\x=-16\end{matrix}\right.\)
\(\left(x+2\right)\left(x+4\right)^2\left(x+8\right)=63x^2\\ \Leftrightarrow\left(x^2+2x+8x+16\right)\left(x^2+8x+16\right)=63x^2\\ \Leftrightarrow\left(x^2+8x+16\right)^2+2x\left(x^2+8x+16\right)=63x^2\\ \Leftrightarrow\left(x^2+8x+16\right)^2+2x\left(x^2+8x+16\right)-63x^2=0\\ \Leftrightarrow\left[\left(x^2+8x+16\right)^2+2x\left(x^2+8x+16\right)+x^2\right]-64x^2=0\\ \Leftrightarrow\left(x^2+8x+16+x\right)^2-64x^2=0\\ \Leftrightarrow\left(x^2+9x+16+8x\right)\left(x^2+9x+16-8x\right)=0\\ \Leftrightarrow\left(x^2+17x+16\right)\left(x^2+x+16\right)=0\\ \Leftrightarrow\left(x^2+16x+x+16\right)\left(x^2+x+\dfrac{1}{4}+\dfrac{63}{4}\right)=0\\ \Leftrightarrow\left[\left(x^2+16x\right)+\left(x+16\right)\right]\left[\left(x^2+x+\dfrac{1}{4}\right)+\dfrac{63}{4}\right]=0\\ \Leftrightarrow\left[x\left(x+16\right)+\left(x+16\right)\right]\left[\left(x+\dfrac{1}{2}\right)^2+\dfrac{63}{4}\right]=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+16\right)=0\left(\text{Vì }\left(x+\dfrac{1}{2}\right)^2+\dfrac{63}{4}\ne0\right)\\ \Leftrightarrow\left[{}\begin{matrix}x+1=0\\x+16=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=-1\\x=-16\end{matrix}\right.\)
Vậy tập nghiệm phương trình là \(S=\left\{-1;-16\right\}\)