\(^{\left(2-7\right)^2}\)

Nếu a=(-1).(-2).(-3).L.(-2014) thì a > 0...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 4 2019

a)\(x\times\left(-2\right)-9\div\left(-3\right)=\left(2-7\right)^2\)

\(x\times\left(-2\right)-\left(-3\right)=\left(-5\right)^2\)

\(x\times\left(-2\right)-\left(-3\right)=25\)

\(x\times\left(-2\right)=25+\left(-3\right)\)

\(x\times\left(-2\right)=22\)

\(x=22:\left(-2\right)\)

\(x=\left(-11\right)\)

Vậy : x = ( -11 )

b) ( - 1) . ( -2 ) . (-3 ) ..... ( -2014)

Dãy số trên có tất cả ( 2014 - 1 ) : 1 + 1 = 2014 số hạng

=> a là 1 số nguyên dương 

=> a > 0 là đúng < vì số nguyên dương lớn hơn 0 và tích trên không thể bằng không >

c) \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}...+\frac{1}{2013^2}\)

Ta có : \(\frac{1}{3^2}< \frac{1}{2.3}\)

            \(\frac{1}{4^2}< \frac{1}{3.4}\)

              ....................

              \(\frac{1}{2013^2}< \frac{1}{2012.2013}\)

\(\Rightarrow\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2012.2013}\)

\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2013^2}< \frac{1}{2^2}+\frac{1}{2}-\frac{1}{2013}\)

\(\Rightarrow A< \frac{3}{4}-\frac{1}{2013}< \frac{3}{4}\)

Vậy : \(A< \frac{3}{4}\)

            

23 tháng 4 2019

cảm ơn mọi người nhiều ạ

26 tháng 4 2018

\(a)\) Đặt \(A=\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}\) ta có : 

\(A=\frac{2014-1}{2014}+\frac{2015-1}{2015}+\frac{2013+2}{2013}\)

\(A=\frac{2014}{2014}-\frac{1}{2014}+\frac{2015}{2015}-\frac{1}{2015}+\frac{2013}{2013}+\frac{2}{2013}\)

\(A=1-\frac{1}{2014}+1-\frac{1}{2015}+1+\frac{2}{2013}\)

\(A=\left(1+1+1\right)-\left(\frac{1}{2014}+\frac{1}{2015}-\frac{2}{2013}\right)\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\left(\frac{1}{2013}+\frac{1}{2013}\right)\right]\)

\(A=3-\left[\frac{1}{2014}+\frac{1}{2015}-\frac{1}{2013}-\frac{1}{2013}\right]\)

\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]\)

Mà : 

\(\frac{1}{2014}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2014}-\frac{1}{2013}< 0\)

\(\frac{1}{2015}< \frac{1}{2013}\)\(\Rightarrow\)\(\frac{1}{2015}-\frac{1}{2013}< 0\)

Từ (1) và (2) suy ra : \(\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)< 0\) ( cộng theo vế ) 

\(\Rightarrow\)\(-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>0\)

\(\Rightarrow\)\(A=3-\left[\left(\frac{1}{2014}-\frac{1}{2013}\right)+\left(\frac{1}{2015}-\frac{1}{2013}\right)\right]>3\) ( cộng hai vế cho 3 ) 

\(\Rightarrow\)\(A>3\) ( điều phải chứng minh ) 

Vậy \(A>3\)

Chúc đệ học tốt ~ 

26 tháng 4 2018

c, 

\(C=\frac{1}{2}\cdot\frac{3}{4}\cdot\frac{5}{6}\cdot...\cdot\frac{9999}{10000}\)

vì \(\frac{1}{2}< \frac{2}{3}\)

\(\frac{3}{4}< \frac{4}{5}\)

\(\frac{5}{6}< \frac{6}{7}\)

.............................

\(\frac{9999}{10000}< \frac{10000}{10001}\)

nên \(C^2< \frac{1}{2}\cdot\frac{2}{3}\cdot\frac{3}{4}\cdot...\cdot\frac{10000}{10001}\)

\(\Rightarrow C^2< \frac{1}{10001}< \frac{1}{10000}\)

\(\Rightarrow C< \frac{1}{100}\)

bt lm mỗi một câu :v

,mình sửa lại đề:

\(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}< 3\)

xóa các chữ số ở tử và mẫu: 2014 và 2014,2015 và 2015

=\(\frac{2013}{2013}\)

=\(1\)

vì \(1>3\) nên \(\frac{2013}{2014}+\frac{2014}{2015}+\frac{2015}{2013}>3\)

10 tháng 4 2019

Bài 1:

d)

= \(\frac{-5}{9}\left(\frac{6}{13}+\frac{7}{13}\right)+\frac{5}{23}.\frac{7}{9}\)

= \(\frac{-5}{9}.1+\frac{35}{207}\)

= \(\frac{-80}{207}\)

10 tháng 4 2019

Bài 2:

a) 20%x + 0,4x = 4,5

x( 20% + 0,4 ) = 4,5

x. 0,6 = 4,5

x = 4,5 : 0,6

x = 7,5

25 tháng 3 2018

\(a)\) Đặt \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2010^2}\) ta có : 

\(A< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2009.2010}\)

\(A< \frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2009}-\frac{1}{2010}\)

\(A< 1-\frac{1}{2010}=\frac{2009}{2010}< 1\)

\(\Rightarrow\)\(A< 1\) ( đpcm ) 

Vậy \(A< 1\)

Chúc bạn học tốt ~ 

8 tháng 6 2017

\(A=\frac{3}{2^2}.\frac{8}{3^2}.\frac{15}{4^2}...\frac{2013^2-1}{2013^2}.\frac{2014^2-1}{2014^2}\)

\(A=\frac{1.3.2.4.3.5....2012.2014.2013.2015}{2^2.3^2.4^2...2013^2.2014^2}\)

\(A=\frac{\left(1.2.3...2012.2013\right).\left(3.4.5...2014.2015\right)}{\left(2.3.4...2013.2014\right).\left(2.3.4...2013.2014\right)}\)(nhóm từng số ở trước và sau vào 2 nhóm khác nhau)

\(A=\frac{3.2015}{2014.2}\)

\(A=\frac{6045}{4028}\)

8 tháng 6 2017

\(A=\frac{6045}{4028}\),nha bạn ,chúc bạn hok tốt ,love bạn nhìu ,cách làm giống như Monozono Nanami nha

13 tháng 5 2019

bài 3.\(\frac{x-7}{3}=\frac{4x-1}{2}\Leftrightarrow2x-14=12x-3\\ \Leftrightarrow10x=-11\\ \Leftrightarrow x=\frac{-11}{10}\)

13 tháng 5 2019

Bài 1 :

ta thấy :

\(\frac{1}{2^2}< \frac{1}{1.2};\frac{1}{3^2}< \frac{1}{2.3};\frac{1}{4^2}< \frac{1}{3.4};......;\frac{1}{\left(n-1\right)^2}< \frac{1}{\left(n-2\right).\left(n-1\right)};\frac{1}{n^2}< \frac{1}{\left(n-1\right).n}\)

=>\(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{\left(n-1\right)^2}+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+.....+\frac{1}{\left(n-2\right).\left(n-1\right)}+\frac{1}{\left(n-1\right).n}\)

mà :

\(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{\left(n-2\right).\left(n-1\right)}+\frac{1}{\left(n-1\right).n}\)

=\(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+....+\frac{1}{n-1}-\frac{1}{n}\)

=\(1-\frac{1}{n}\)<1

=>A<1

Bài 3 :

\(\frac{x-7}{3}=\frac{4x-1}{2}\)

=>\(\frac{2.\left(x-7\right)}{6}=\frac{3\left(4x-1\right)}{6}\)

=>\(2\left(x-7\right)=3\left(4x-1\right)\)

=>\(x-7=\frac{3}{2}.\left(4x-1\right)\)

=>\(\frac{x-7}{4x-1}=\frac{3}{2}\)

\(=>\left\{{}\begin{matrix}x-7=3=>x=10\\4x-1=2=>4x=3=>x=\frac{3}{4}\end{matrix}\right.\)

Vậy x ∈{\(10;\frac{3}{4}\)}