Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Nhận xét : VT > 0 => VP > 0 \(\Leftrightarrow2x-4010>0\Leftrightarrow x>2005\)
\(\Rightarrow x-j>0,j=1,2,...,2014\)
Khi đó , pt trở thành : \(\left(x-1\right)+\left(x-2\right)+...+\left(x-2014\right)=2x-4010\)
\(\Leftrightarrow2014x-2x=\left(1+2+3+...+2014\right)-4010\)
\(\Leftrightarrow2012x=\frac{2014.2015}{2}-4010=2025095\)
\(\Leftrightarrow x=\frac{2025095}{2012}\)
1)\(2x^2+9y^2-6xy-6x-12y+2004\)
\(=x^2+x^2-6xy+9y^2-6x-12y+2004\)
\(=x^2+\left(x-3y\right)^2-10x+4x-12y+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+2004\)
\(=\left(x-3y\right)^2+4\left(x-3y\right)+x^2-10x+4+25+1975\)
\(=\left[\left(x-3y\right)^2+4\left(x-3y\right)+4\right]+\left(x^2-10x+25\right)+1975\)
\(=\left(x-3y+2\right)^2+\left(x-5\right)^2+1975\ge1975\)
Dấu "=" khi \(\begin{cases}\left(x-5\right)^2=0\\\left(x-3y+2\right)^2=0\end{cases}\)\(\Leftrightarrow\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
Vậy Min=1975 khi \(\begin{cases}x=5\\y=\frac{7}{3}\end{cases}\)
2)\(x\left(x+1\right)\left(x^2+x-4\right)=\left(x^2+x\right)\left(x^2+x-4\right)\)
Đặt \(t=x^2+x\) ta có:
\(t\left(t-4\right)=t^2-4t+4-4\)
\(=\left(t-2\right)^2-4\ge-4\)
Dấu "=" khi \(t-2=0\Leftrightarrow t=2\Leftrightarrow x^2+x=2\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
Vậy Min=-4 khi \(\left[\begin{array}{nghiempt}x=-2\\x=1\end{array}\right.\)
3)\(\left(x^2+5x+5\right)\left[\left(x+2\right)\left(x+3\right)+1\right]\)
\(=\left(x^2+5x+5\right)\left[x^2+5x+6+1\right]\)
Đặt \(t=x^2+5x+5\) ta có:
\(t\left(t+1\right)=t^2+t+\frac{1}{4}-\frac{1}{4}=\left(t+\frac{1}{2}\right)^2-\frac{1}{4}\ge-\frac{1}{4}\)
Dấu "=" khi \(t+\frac{1}{2}=0\Leftrightarrow t=-\frac{1}{2}\Leftrightarrow x^2+5x+5=-\frac{1}{2}\)\(\Leftrightarrow x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
Vậy Min=\(-\frac{1}{4}\) khi \(x_{1,2}=\frac{-10\pm\sqrt{12}}{4}\)
4)\(\left(x-1\right)\left(x-3\right)\left(x^2-4x+5\right)\)
\(=\left(x^2-4x+3\right)\left(x^2-4x+5\right)\)
Đặt \(t=x^2-4x+3\) ta có:
\(t\left(t+2\right)=t^2+2t+1-1=\left(t+1\right)^2-1\ge-1\)
Dấu "=" khi \(t+1=0\Leftrightarrow t=-1\Leftrightarrow x^2-4x+3=-1\Leftrightarrow x=2\)
Vậy Min=-1 khi x=2
a) \(\left(x-\frac{1}{2}\right)^3=27\)
=> \(\left(x-\frac{1}{2}\right)^3=3^3\)
=> \(x-\frac{1}{2}=3\)
=> \(x=3+\frac{1}{2}\)
=> \(x=\frac{7}{2}\)
Vậy \(x=\frac{7}{2}.\)
b) \(\left(2x-1\right)^3=-27\)
=> \(\left(2x-1\right)^3=\left(-3\right)^3\)
=> \(2x-1=-3\)
=> \(2x=\left(-3\right)+1\)
=> \(2x=-2\)
=> \(x=\left(-2\right):2\)
=> \(x=-1\)
Vậy \(x=-1.\)
Chúc bạn học tốt!
Câu 2:
a: Ta có: \(\left|x+\dfrac{19}{5}\right|+\left|y+\dfrac{1890}{1975}\right|+\left|z-2004\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x+\dfrac{19}{5}=0\\y+\dfrac{1890}{1975}=0\\z-2004=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{19}{5}\\y=-\dfrac{378}{395}\\z=2004\end{matrix}\right.\)
b: \(\left|x-\dfrac{1}{2}\right|+\left|y+\dfrac{3}{2}\right|+\left|x-y-z-\dfrac{1}{2}\right|=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-\dfrac{1}{2}=0\\y+\dfrac{3}{2}=0\\x-y-z-\dfrac{1}{2}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\y=-\dfrac{3}{2}\\z=\dfrac{3}{2}\end{matrix}\right.\)
Bài 7 :
\(\frac{1}{4}-\left(2x-1\right)^2=0\)
\(\left(2x-1\right)^2=\frac{1}{4}-0\)
\(\left(2x-1\right)^2=\frac{1}{4}\)
\(\left(2x-1\right)^2=\left(\frac{1}{2}\right)^2\)
TH1:\(\Rightarrow2x-1=\frac{1}{2}\)
\(2x=\frac{1}{2}+1\)
\(2x=\frac{3}{2}\)
\(x=\frac{3}{4}\)
TH2:\(\Rightarrow2x-1=-\frac{1}{2}\)
\(2x=-\frac{1}{2}+1\)
\(2x=\frac{1}{2}\)
\(x=\frac{1}{4}\)
Vậy x \(\in\left\{\frac{1}{4};\frac{3}{4}\right\}\)
Bài 6 :
\(3^{x+1}=81\)
\(3^{x+1}=3^4\)
\(x+1=4\)
\(\Rightarrow x=3\)
Vậy x = 3