![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Mình ko ghi áp dụng tính chất dãy bằng nhau nx nhé
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}=\frac{x+y+z}{2+3+4}=2\Rightarrow x=2.2=4;y=2.3=6;z=2.4=8\)
\(\frac{x}{5}=\frac{y}{-6}=\frac{z}{7}=\frac{-z}{-7}=\frac{x+y-z}{5-6-7}=\frac{32}{-8}=-4\Leftrightarrow x=-20;y=24;z=-28\)
\(\frac{2x}{10}=\frac{3y}{6}=\frac{5z}{15}=\frac{2x-3y+5z}{10-6+15}=\frac{38}{19}=2\Rightarrow x=10;y=4;z=6\)
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left|\frac{1}{3}x+\frac{5}{4}\right|-\frac{1}{8}=0\)
\(\Leftrightarrow\left|\frac{1}{3}x+\frac{5}{4}\right|=\frac{1}{8}\)
\(\Leftrightarrow\orbr{\begin{cases}\frac{1}{3}x+\frac{5}{4}=\frac{1}{8}\\\frac{1}{3}x+\frac{5}{4}=-\frac{1}{8}\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-\frac{27}{8}\\x=-\frac{33}{8}\end{cases}}\)
Vậy x=-27/8 và x=-33/8
b) \(\frac{x-2}{32}=\frac{2}{x-2}\)
\(\Leftrightarrow\left(x-2\right)^2=64\)
\(\Leftrightarrow\left(x-2\right)^2=8^2\)
\(\Leftrightarrow\hept{\begin{cases}x-2=8\\x-2=-8\end{cases}}\Leftrightarrow\hept{\begin{cases}x=10\\x=-6\end{cases}}\)
vậy x=10 hoặc x=-6
![](https://rs.olm.vn/images/avt/0.png?1311)
2a) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{10}=\frac{y}{6}=\frac{z}{21}\) => \(\frac{5x}{50}=\frac{y}{6}=\frac{2z}{42}=\frac{5x+y-2z}{50+6-42}=\frac{28}{14}=2\)
=> \(\hept{\begin{cases}\frac{x}{10}=2\\\frac{y}{6}=2\\\frac{z}{21}=2\end{cases}}\) => \(\hept{\begin{cases}x=2.10=20\\y=2.6=12\\z=2.21=42\end{cases}}\)
Vậy x,y,z lần lượt là 20; 12; 42
#)Giải :
Bài 2 :
d) Đặt \(\frac{x}{2}=\frac{y}{3}=\frac{z}{5}=k\)
\(\Rightarrow x=2k;y=3k;z=5k\)
\(\Rightarrow2k.3k.5k=810\)
\(\Rightarrow30k^3=810\)
\(\Rightarrow k^3=3\)
\(\Rightarrow k=3\)
\(\Rightarrow\hept{\begin{cases}\frac{x}{2}=3\\\frac{y}{3}=3\\\frac{z}{5}=3\end{cases}\Rightarrow\hept{\begin{cases}x=6\\x=9\\x=15\end{cases}}}\)
Vậy x = 6; y = 9; z = 15
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,|x-1|=3x+2\)
\(\Rightarrow\hept{\begin{cases}x-1=3x+2\\-\left(x-1\right)=3x+2\end{cases}}\Rightarrow\hept{\begin{cases}x=\frac{-3}{2}\\x=\frac{-1}{4}\end{cases}}\)
Vậy x = -3/2 hoặc x = -1/4
\(b,|5x|=x-12\)
\(\Rightarrow\hept{\begin{cases}5x=x-12\\-5x=x-12\end{cases}}\Rightarrow\hept{\begin{cases}x=-3\\x=2\end{cases}}\)
Vậy x = -3 hoặc x = 2
\(c,|7-x|=5x+1\)
\(\Rightarrow\hept{\begin{cases}7-x=5x+1\\-\left(7-x\right)=5x+1\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\x=-2\end{cases}}\)
Vậy x = 1 hoặc x = -2
![](https://rs.olm.vn/images/avt/0.png?1311)
\(B=\frac{32-2x}{11-x}=\frac{11-x+21-x}{11-x}=1+\frac{21-x}{11-x}=1+\frac{11-x+10}{11-x}=2+\frac{10}{11-x}\)
để B lớn nhất thì \(\frac{10}{11-x}\)lớn nhất
\(\Rightarrow11-x\)nhỏ nhất(khác 0)
\(\Rightarrow x=10\)
\(\Rightarrow B=12\)tại \(x=10\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(\frac{32}{2^x}=2\)
\(\Rightarrow\frac{2^5}{2^x}=2^1\)
\(\Rightarrow5-x=1\)
\(\Rightarrow x=5-1\)
\(\Rightarrow x=4\)
\(\frac{32}{2^x}=2\)
=> 2x = 32 : 2
=> 2x = 16
=> 2x = 24
=> x = 4
Năm mới vui vẻ nha!
Hk tốt
![](https://rs.olm.vn/images/avt/0.png?1311)
\(A=\frac{15\left|x+1\right|+32}{6\left|x+1\right|+8}=\frac{\frac{5}{2}\left(6\left|x+1\right|+8\right)+12}{6\left|x+1\right|+8}=\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\)
Do \(6\left|x+1\right|+8\ge8\) => \(\frac{12}{6\left|x+1\right|+8}\le\frac{12}{8}=\frac{3}{2}\)=> \(\frac{5}{2}+\frac{12}{6\left|x+1\right|+8}\le\frac{5}{2}+\frac{3}{2}=4\)
Dấu "=" xảy ra<=> x + 1 = 0 <=> x = -1
Vậy MaxA = 4 <=> x = -1
![](https://rs.olm.vn/images/avt/0.png?1311)
a)\(\left|5x-4\right|=\left|x+2\right|\Leftrightarrow\) \(\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\) \(\Leftrightarrow\begin{cases}5x-x=4+2\\5x+x=4-2\end{cases}\Leftrightarrow\)\(\begin{cases}4x=6\\6x=2\end{cases}\) \(\Leftrightarrow\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}\)
b)\(\left|7x+1\right|-\left|5x+6\right|=0\Leftrightarrow\left|7x+1\right|=\left|5x+6\right|\Leftrightarrow\begin{cases}7x+1=5x+6\\7x+1=-5x-6\end{cases}\Leftrightarrow\begin{cases}7x-5x=-1+6\\7x+5x=-1-6\end{cases}\Leftrightarrow\begin{cases}2x=5\\12x=-7\end{cases}\Leftrightarrow\begin{cases}x=\frac{5}{2}\\x=-\frac{7}{12}\end{cases}\)
c) Tương tự
Cứ áp dụng \(\left|A\left(x\right)\right|=\left|B\left(x\right)\right|\)\(\Leftrightarrow\)\(A\left(x\right)=B\left(x\right)\) hoặc \(A\left(x\right)=-B\left(x\right)\) là đc mà
VD câu a) nè \(\left|5x-4\right|=\left|x+2\right|\)
\(\Leftrightarrow\)\(\orbr{\begin{cases}5x-4=x+2\\5x-4=-x-2\end{cases}\Leftrightarrow\orbr{\begin{cases}x=\frac{3}{2}\\x=\frac{1}{3}\end{cases}}}\)
Tương tự ....
Chúc bạn học tốt ~
![](https://rs.olm.vn/images/avt/0.png?1311)
a, \(A=4\left|x-2\right|+1\)
Ta có : \(4\left|x-2\right|\ge0\)
\(\Rightarrow4\left|x-2\right|+1\ge1\)
Vậy giá trị nhỏ nhất là 1 khi x - 2 = 0 => x = 2
b, Ta đã biết với mọi \(x,y\inℚ\)thì \(\left|x+y\right|\le\left|x\right|+\left|y\right|\)
Đẳng thức xảy ra khi \(xy\ge0\)
Ta có \(B=\left|x-2020\right|+\left|x-1\right|=\left|x-2020\right|+\left|1-x\right|\ge\left|x-2020+1-x\right|=\left|-2019\right|=2019\)
Vậy \(B\ge2019\), B đạt giá trị nhỏ nhất là 2019 khi \(1\le x\le2020\)