K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\left(x-1\right)^3-\left(5-x\right)^3=0\\ =>\left(x-1\right)^3=\left(5-x\right)^3\\ =>x-1=5-x\\ \)

\(=>2x=6\\ =>x=3\)

6 tháng 8 2016

1, x(x - 5) - 4x + 20 = 0

=> x(x - 5) - 4(x - 5) = 0

=> (x - 4)(x - 5) = 0

=> x - 4 = 0 hoặc x - 5 = 0

=> x = 4 hoặc x = 5

=> x thuộc {4; 5}

2, 3(x + 1) + x(x + 1) 

= (3 + x)(x + 1)

3, 2x3 + x = 0

=> x(2x2 + 1) = 0

=> x = 0 hoặc 2x2 + 1 = 0

=> x = 0 hoặc 2x2 = -1

=> x = 0 hoặc x2 = -1/2 (vô lí vì x2 > hoặc = 0 với mọi x)

=> x = 0

4, x3 - 16x = 0

=> x(x2 - 16) = 0

=> x = 0 hoặc x2 - 16 = 0

=> x = 0 hoặc x2 = 16

=> x = 0 hoặc x = 4 hoặc x = -4

=> x thuộc {-4; 0; 4}

5, x2 + 6x = -9

=> x2 + 6x + 9 = 0

=> x2 + 2.3.x + 32 = 0

=> (x + 3)2 = 0

=> x + 3 = 0

=> x = -3

6, x4 - 2x3 + 10x2 - 20x = 0

=> x2(x2 + 10) - 2x(x2 + 10) = 0

=> (x2 + 2x)(x2 + 10) = 0

=> x(x +2)(x2 + 10) = 0

-TH1: x = 0

-TH2: x + 2 = 0 => x = -2

-TH3: x2 + 10 = 0 => x2 = -10 (vô lí vì x2 > hoặc = 0 với mọi x)

=> x thuộc {0; -2}

7, (2x - 3)2 = (x + 5)2

-TH1: 2x - 3 = x + 5

=> x = 8

- TH2: - 2x + 3 = x + 5

=> -3x = 2

=> x = \(\frac{-2}{3}\)

- TH3: 2x - 3 = - x - 5

=> 3x = -2

=> x = \(\frac{-2}{3}\)

- TH4: - 2x + 3 = - x - 5

=> -x = -8

=> x = 8`

=> x thuộc {\(\frac{-2}{3}\); 8}

28 tháng 7 2015

1) (2x-1)(x+3)(2-x)=0

=>2x-1 =0 hoặc x+3=0 hoặc 2-x=0

=>x=1/2 hoặc x=-3 hoặc x=2

2)x^3 + x^2 + x + 1 = 0

=>.x^2(x+1)+(x+1)=0

=>(x^2+1)(x+1)=0

=>x^2+1=0 hoặc x+1=0 

=>                      x =-1

3) 2x(x-3)+5(x-3) =0    

=>(2x+5)(x-3)=0

=>2x+5=0 hoặc x-3=0

=>x=-5/2 hoặc x=3

4)x(2x-7)-(4x-14)=0

=> (x-2)(2x-7)=0

=> x-2 =0 hoặc 2x-7=0

=>x=2 hoặc x=7/2

5)2x^3+3x^2+2x+3=0

=>x^2(2x+3)+2x+3=0

=>(x^2+1)(2x+3)=0

=>x^2+1=0 hoặc 2x+3=0

=>                      x =-3/2

19 tháng 2 2017

x = 3/2 đó mình chắc chắn 100 %

19 tháng 4 2020

Giúp luôn Đức Hải Nguyễn câu e:

e, (x - 1)2 + 2(x - 1)(x + 2) + (x + 2)2 = 0

\(\Leftrightarrow\) (x - 1 + x + 2)2 = 0

\(\Leftrightarrow\) (2x + 1)2 = 0

\(\Leftrightarrow\) 2x + 1 = 0

\(\Leftrightarrow\) x = \(\frac{-1}{2}\)

Vậy S = {\(\frac{-1}{2}\)}

Chúc bn học tốt!!

19 tháng 4 2020

a) (x - 3)(5 - 2x) = 0

<=> \(\left[{}\begin{matrix}x-3=0\\5-2x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=3\\x=\frac{5}{2}\end{matrix}\right.\)

b) (x + 5)(x - 1) - 2x(x - 1) = 0

<=> (x - 1)(x + 5 - 2x) = 0

<=> (x - 1)(5 - x) = 0

<=> \(\left[{}\begin{matrix}x-1=0\\5-x=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=1\\x=5\end{matrix}\right.\)

c) 5(x + 3)(x - 2) - 3(x + 5)(x - 2) = 0

<=> (x - 2)[5(x + 3) - 3(x + 5)] = 0

<=> (x - 2)(5x + 3 - 3x - 15) = 0

<=> (x - 2)(2x - 12) = 0

<=> \(\left[{}\begin{matrix}x-2=0\\2x-12=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=2\\x=6\end{matrix}\right.\)

d) (x - 6)(x + 1) - 2(x + 1) = 0

<=> (x + 1)(x - 6 - 2) = 0

<=> (x + 1)(x - 8) = 0

<=> \(\left[{}\begin{matrix}x+1=0\\x-8=0\end{matrix}\right.\)

<=> \(\left[{}\begin{matrix}x=-1\\x=8\end{matrix}\right.\)

Câu e thì để mình nghĩ đã :)

#Học tốt!

12 tháng 10 2017

Bài 3:

1. \(\left(x-1\right)\left(x+2\right)+5x-5=0\)

\(\Rightarrow\left(x-1\right)\left(x+2\right)+5\left(x-1\right)=0\)

\(\Rightarrow\left(x-1\right)\left(x+2+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

Vậy.......................

2. \(\left(3x+5\right)\left(x-3\right)-6x-10=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3\right)-2\left(3x+5\right)=0\)

\(\Rightarrow\left(3x+5\right)\left(x-3-2\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

Vậy........................

3. \(\left(x-2\right)\left(2x+3\right)-7x^2+14x=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3\right)-7x\left(x-2\right)=0\)

\(\Rightarrow\left(x-2\right)\left(2x+3-7x\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}x-2=0\\-5x+3=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=\dfrac{3}{5}\end{matrix}\right.\)

Vậy............................

4, 5 tương tự nhé bn!

12 tháng 10 2017

bài 3

1 (x-1)(x+2)+5x-5=0

=>(x-1)(x+2)+(5x-5)=o

=>(x-1)(x+2)+5(x-1)=0

=>(x-1)(x+2+5)=0

=>(x-1)(x+7)=0

=>\(\left[{}\begin{matrix}x-1=0\\x+7=0\end{matrix}\right.\) =>\(\left[{}\begin{matrix}x=1\\x=-7\end{matrix}\right.\)

vậy x=1 hoặc x=-7

2. (3x+5)(x-3)-6x-10=0

=>(3x+5)(x-3)-(6x+10)=0

=>(3x+5)(x-3)-2(3x+5)=0

=>(3x+5)(x-3-2)=0

=>(3x+5)(x-5)=0

=>\(\left[{}\begin{matrix}3x+5=0\\x-5=0\end{matrix}\right.\)=>\(\left[{}\begin{matrix}x=-\dfrac{5}{3}\\x=5\end{matrix}\right.\)

25 tháng 6 2016

a)\(3x\left(x-1\right)+x-1=0\Leftrightarrow\left(x-1\right)\left(3x-1\right)=0\Leftrightarrow\hept{\begin{cases}x-1=0\\3x-1=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=1\\x=\frac{1}{3}\end{cases}}}\)

\(S=\left\{1;\frac{1}{3}\right\}\)

b)\(2\left(x+3\right)-x^2-3x=0\)

\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)

\(\Leftrightarrow\left(2-x\right)\left(x+3\right)=0\Leftrightarrow\hept{\begin{cases}2-x=0\\x+3=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=2\\x=-3\end{cases}}}\)

\(S=\left\{2;-3\right\}\)

23 tháng 9 2018

1,=\(x^2-3x-2x^2+6x=-x^2+3x\)

2,=\(3x^2-x-5+15x=3x^2+14x-5\)

3,=\(5x+15-6x^2-6x=-6x^2-x+15\)

4,=\(4x^2+12x-x-3=4x^2+11x-3\)

5: =>(x+5)^3=0

=>x+5=0

=>x=-5

6: =>(2x-3)^2=0

=>2x-3=0

=>x=3/2

7: =>(x-6)(x-10)=0

=>x=10 hoặc x=6

8: \(\Leftrightarrow x^3-12x^2+48x-64=0\)

=>(x-4)^3=0

=>x-4=0

=>x=4

5 tháng 5 2019

a, (x+2)(x-3)=0

\(\left\{{}\begin{matrix}x+2=0\\x+3=0\end{matrix}\right.\left\{{}\begin{matrix}x=-2\\x=-3\end{matrix}\right.\)

=>S={-2;-3}

b, (x-5)(7-x)=0

\(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\left\{{}\begin{matrix}x=5\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

=>S={5;7}

c, (2x+3)(-x+7)=0

\(\left\{{}\begin{matrix}2x+3=0\\-x+7=0\end{matrix}\right.\left\{{}\begin{matrix}2x=-3\\-x=-7\end{matrix}\right.\left\{{}\begin{matrix}x=-\frac{3}{2}\\x=7\end{matrix}\right.\)

=>S={-3/2;7}

5 tháng 5 2019

a) (x+2)(x+3)=0

<=> \(\left\{{}\begin{matrix}x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)

b) (x-5)(7-x)

<=> \(\left\{{}\begin{matrix}x-5=0\\7-x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=5\\x=7\end{matrix}\right.\)

c) ( 2x+3)(-2+7)

<=>\(\left\{{}\begin{matrix}2x+3=0\\7-2=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{-3}{2}\\x=\frac{2}{7}\end{matrix}\right.\)

d) ( -10x+5)(2x+8)

<=>\(\left\{{}\begin{matrix}5-10x=0\\2x+8=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=\frac{1}{2}\\x=\frac{-4}{1}\end{matrix}\right.\)

e) (x-1)(x+5)(-3x+8)=0

<=> \(\left\{{}\begin{matrix}x-1=0\\x+5=0\\8-3x=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-5\\x=\frac{8}{3}\end{matrix}\right.\)

f) (x-1)(3x+1)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\3x+1=0\end{matrix}\right.\)

<=>\(\left\{{}\begin{matrix}x=1\\x=\frac{-1}{3}\end{matrix}\right.\)

g) (x-1)(x+2)(x-3)=0

<=>\(\left\{{}\begin{matrix}x-1=0\\x+2=0\\x-3=0\end{matrix}\right.\)

<=> \(\left\{{}\begin{matrix}x=1\\x=-2\\x=3\end{matrix}\right.\)

h) (5x+3)(x2+4)(x-1)=0

<=> \(\left\{{}\begin{matrix}5x+3=0\\x-1=0\end{matrix}\right.\)

x2+4 > 0 với mọi x∈ R

<=>\(\left\{{}\begin{matrix}x=\frac{-3}{5}\\x=1\end{matrix}\right.\)

Bạn tự kết luận nha , thông cảm cho tớ !leuleu

29 tháng 9 2018

\(2x^3-50x=0\)

<=>  \(2x\left(x^2-25\right)=0\)

<=>   \(2x\left(x-5\right)\left(x+5\right)=0\)

đến đây

bạn tự giải nhé

hk tốt   

7 tháng 5 2020

a)

\(\left(5x+3\right)\cdot\left(x^2+4\right)\cdot\left(x-4\right)=0\\ \Rightarrow\left[{}\begin{matrix}5x+3=0\\x-4=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-\frac{3}{5}\\x=4\end{matrix}\right.\)

b)

\(\left(4x-1\right)\cdot\left(x-3\right)-\left(x-2\right)\cdot\left(5x+2\right)=0\\ \Leftrightarrow4x^2-12x-x+3-5x^2-2x+10x+4=0\\ \Leftrightarrow-x^2-5x+7=0\\ \Rightarrow x=\left[{}\begin{matrix}-\frac{5+\sqrt{53}}{2}\\-\frac{5-\sqrt{53}}{2}\end{matrix}\right.\)

c)

\(\left(x+3\right)\cdot\left(x-5\right)+\left(x+3\right)\cdot\left(3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(x-5+3x-4\right)=0\\ \Leftrightarrow\left(x+3\right)\cdot\left(4x-9\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+3=0\\4x-9=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-3\\x=\frac{9}{4}\end{matrix}\right.\)

d)

\(\left(x+6\right)\cdot\left(3x-1\right)+x^2-36=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x^2-36\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1\right)+\left(x+6\right)\cdot\left(x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(3x-1+x-6\right)=0\\ \Leftrightarrow\left(x+6\right)\cdot\left(4x-7\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+6=0\\4x-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-6\\x=\frac{7}{4}\end{matrix}\right.\)

e)

\(0.75x\cdot\left(x+5\right)=\left(x+5\right)\cdot\left(3-1.25x\right)\\ \Leftrightarrow0.75x\cdot\left(x+5\right)-\left(x+5\right)\cdot\left(3-1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(0.75x-3+1.25x\right)=0\\ \Leftrightarrow\left(x+5\right)\cdot\left(2x-3\right)=0\\ \Rightarrow\left[{}\begin{matrix}x+5=0\\2x-3=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=-5\\x=\frac{3}{2}\end{matrix}\right.\)

1 tháng 3 2020

1. \(\Leftrightarrow\left(x-6\right)\left(x+7\right)+5\left(x-6\right)\left(3x-1\right)=0\)

\(\Leftrightarrow\left(x-6\right)\left[\left(x+7\right)+5\left(3x-1\right)\right]=0\)

\(\Leftrightarrow\left(x-6\right)\left(16x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-6=0\\16x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-\frac{1}{8}\end{matrix}\right.\)

1 tháng 3 2020

4. \(\Leftrightarrow\left(x+5\right)^2\left(3x+2\right)^2-x^2\left(x+5\right)^2=0\)

\(\Leftrightarrow\left(x+5\right)^2\left[\left(3x+2\right)^2-x^2\right]=0\)

\(\Leftrightarrow\left(x+5\right)^2\left(2x+2\right)\left(4x+2\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x+5\right)^2=0\\2x+2=0\\4x+2=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x+5=0\\2x=-2\\4x=-2\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=-5\\x=-1\\x=-\frac{1}{2}\end{matrix}\right.\)