Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài giải
Ta có : \(\hept{\begin{cases}x_1.x_2=m^2+3\\x_1+x_2=2\left(m+1\right)\end{cases}}\)
\(\frac{x_1}{x_2}+\frac{x_2}{x_1}=\frac{8}{x_1.x_2}\Leftrightarrow\frac{x_1^2+x_2^2}{x_1.x_2}=\frac{8}{x_1.x_2}\)
<=> ( x1 + x2 ) 2 -2x1x2 = 8
<=>4(m+1)2 -2(m2+ 3 ) = 8 <=> 2m2 + 8m - 10=0
<=> \(\orbr{\begin{cases}m=1\\m=-5\left(L\right)\end{cases}}\)
\(x^2+ax+b+1=0\)
\(\Delta=a^2-4b-4\)
Để pt có 2 nghiệm pb \(\Leftrightarrow\Delta>0\Leftrightarrow a^2-4b-4>0\)
Theo hệ thức Vi-et ta có: \(\hept{\begin{cases}x_1+x_2=-a\\x_1.x_2=b+1\end{cases}}\)
Ta có: \(\hept{\begin{cases}x_1-x_2=3\\x_1^3-x_2^3=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)\left(x_1^2+x_1x_2+x_2^2\right)=9\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1^2+x_1x_2+x_2^2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\\left(x_1-x_2\right)^2+3x_1x_2=3\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1-x_2=3\\x_1x_2=-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x_1=3+x_2\\\left(3+x_2\right)x_2=-2\left(1\right)\end{cases}}\)
\(\left(1\right)\Leftrightarrow x_2^2+3x_2+2=0\)
\(\Delta=1\)
\(\Rightarrow\)pt có 2 nghiệm pb \(\orbr{\begin{cases}x_2=\frac{-3+1}{2}=-1\Rightarrow x_1=2\\x_2=\frac{-3-1}{2}=-2\Rightarrow x_1=1\end{cases}}\)
TH1: \(x_1=2;x_2=-1\)
\(\Rightarrow\hept{\begin{cases}a=-1\\b=-3\end{cases}}\)( LOẠI vì a^2 -4b-4 <0 )
TH2: \(x_1=1;x_2=-2\)
\(\Rightarrow\hept{\begin{cases}a=1\\b=-3\end{cases}}\)( tm )
VẬY ...
Pt trên có a=1, b=5, c=-3m+2
\(\Delta=b^2-4ac=25-4\cdot1\cdot\left(-3m+2\right)=17+12m\)
Để pt có hai nghiệm phân biệt thì \(\Delta>0\)<=> 17+12m >0 <=>m> 17/12
Theo hệ thức Viet, ta có:
\(\hept{\begin{cases}x_1+x_2=-5\\x_1\cdot x_2=-3m+2\end{cases}}\)
\(\left(x_1-x_2\right)^2=\left(x_1+x_2\right)^2-4x_1\cdot x_2=25-4\left(-3m+2\right)=17+12m=10\)
=> 12m = -7 <=>m=-7/12 (thỏa đkxđ)
Vậy với m=-7/12 thì phương trình có hai nghiệm x1, x2 thỏa (x1 - x2)^2 =10
a: \(\left|x_1-x_2\right|=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)
\(=\sqrt{\left(\dfrac{1}{2}\right)^2-4\cdot\left(-1\right)}=\sqrt{\dfrac{1}{4}+4}\)
\(=\sqrt{\dfrac{17}{4}}\)
=>\(\left[{}\begin{matrix}x_1-x_2=\dfrac{\sqrt{17}}{2}\\x_1-x_2=-\dfrac{\sqrt{17}}{2}\end{matrix}\right.\)
c,d:Vì pt có hai nghiệm trái dấu
nên chắc chắn hai biểu thức này sẽ không tính được vì sẽ có một căn bậc hai mà biểu thức trong căn âm