Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
\(x\left(x-2\right)+x-2=0\)
\(\Leftrightarrow\left(x-2\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=2\\x=-1\end{array}\right.\)
Vậy x = 2 ; x = - 1
b)
\(x^3+x^2+x+1=0\)
\(\Leftrightarrow x\left(x^2+1\right)+\left(x^2+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+1\right)=0\)
Vì x2+1 > 0
=> x + 1 = 0
=> x = - 1
Vậy x = - 1
c)
\(\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(1-x\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=1\\x=-3\end{array}\right.\)
Vậy x = 1 ; x = - 3
d)
\(2x\left(3x-5\right)=10-6x\)
\(\Leftrightarrow2x\left(3x-5\right)+2\left(3x-5\right)=0\)
\(\Leftrightarrow\left(3x-5\right)\left(2x+1\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{5}{3}\\x=-\frac{1}{2}\end{array}\right.\)
Vậy x = 5 / 3 ; x = - 1 / 2
1. <=> (x-2).(2x+3) = 0
<=> x-2=0 hoặc 2x+3 = 0
<=> x=2 hoặc x=-3/2
2. <=> x^2-4x+4-x^2+9 = 0
<=> 13-4x=0
<=> 4x=13
<=> x = 13/4
3.<=>4x^2-24x+36 - 4x^2+1 = 10
<=> 37-24x = 10
<=> 24x = 37 - 10 = 27
<=> x = 27 : 24 = 9/8
k mk nha
1/ x² - 5x + 6 = 0
⇔ x² - 2x - 3x + 6 = 0
⇔ x(x - 2) - 3(x - 2) = 0
⇔ (x - 2)(x - 3) = 0
⇒S = {2 ; 3}.
1) \(x^2+5x+6=0\)
\(\Leftrightarrow x^2+2x+3x+6=0\)
\(\Leftrightarrow x\left(x+2\right)+3\left(x+2\right)=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+2=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-2\\x=-3\end{array}\right.\)
2) \(2\left(x+3\right)-x^2-3x=0\)
\(\Leftrightarrow2\left(x+3\right)-x\left(x+3\right)=0\)
\(\Leftrightarrow\left(x+3\right)\left(2-x\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+3=0\\2-x=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-3\\x=2\end{array}\right.\)
3) \(x^2+4x+3=0\)
\(\Leftrightarrow x^2+x+3x+3=0\)
\(\Leftrightarrow x\left(x+1\right)+3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+3\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\x+3=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=-3\end{array}\right.\)
4) \(2x^2-3x-5=0\)
\(\Leftrightarrow2x^2+2x-5x-5=0\)
\(\Leftrightarrow2x\left(x+1\right)-5\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(2x-5\right)=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x+1=0\\2x-5=0\end{array}\right.\)\(\Leftrightarrow\left[\begin{array}{nghiempt}x=-1\\x=\frac{5}{2}\end{array}\right.\)
Bài 3a)
\(a+b+c=0\Leftrightarrow a+b=-c\Leftrightarrow a^3+b^3+3ab\left(a+b\right)=-c^3\)
\(\Leftrightarrow a^3+b^3+c^3=-3ab\left(a+b\right)\)
mà \(a+b=-c\Rightarrow a^3+b^3+c^3=3abc\)
Bài 1 :
a, PT <=> \(-16x^2+52x-12=0\)
\(\left(x-\frac{1}{4}\right)\left(x-3\right)=0\)
TH1 : x = 1/4 ; TH2 : x =3
b, \(x^2+x+90=0\)( vô nghiệm )
c, \(x^2-x+2=0\)( vô nghiệm )
1.
\(\left(3x+2\right)^2-\left(5x-4\right)^2=0\)
\(\left[3x+2-\left(5x-4\right)\right]\left(3x+2+5x-4\right)=0\)
\(\left(-2x+6\right)\left(8x-2\right)=0\)
\(\orbr{\begin{cases}-2x+6=0\\8x-2=0\end{cases}}\)
\(\orbr{\begin{cases}x=3\\x=\frac{1}{4}\end{cases}}\)
2.
\(x^2+x+90=0\)
\(x^2+2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+90-\left(\frac{1}{2}\right)^2=0\)
\(\left(x+\frac{1}{2}\right)^2+\frac{359}{4}=0\)
\(\left(x+\frac{1}{2}\right)^2=\frac{-359}{4}\) ( sai vì \(\left(x+\frac{1}{2}\right)^2\ge0\forall x\) )
Suy ra phương trình vô nghiệm
3.
\(x^2-x+2=0\)
\(x^2-2\cdot x\cdot\frac{1}{2}+\left(\frac{1}{2}\right)^2+2-\left(\frac{1}{2}\right)^2=0\)
\(\left(x-\frac{1}{2}\right)^2+\frac{7}{4}=0\)
\(\left(x-\frac{1}{2}\right)^2=\frac{-7}{4}\) ( sai vì \(\left(x-\frac{1}{2}\right)^2\ge0\forall x\) )
Suy ra phương trình vô nghiệm
\(\frac{x-23}{24}+\frac{x-23}{25}=\frac{x-23}{26}\)
\(\Leftrightarrow\frac{x-23}{24}+\frac{x-23}{25}-\frac{x-23}{26}=0\)
\(\Leftrightarrow\left(x-23\right)\left(\frac{1}{24}+\frac{1}{25}-\frac{1}{26}\right)=0\)
\(\Leftrightarrow x-23=0\left(vì\frac{1}{24}+\frac{1}{25}-\frac{1}{26}\ne0\right)\)
\(\Leftrightarrow x=23\)
vậy................
\(\frac{201-x}{99}+\frac{203-x}{97}+\frac{205-x}{95}+3=0\)
\(\Leftrightarrow\left(\frac{201-x}{99}+1\right)+\left(\frac{203-x}{97}+1\right)+\left(\frac{205-x}{95}+1\right)=0\)
\(\Leftrightarrow\frac{300-x}{99}+\frac{300-x}{97}+\frac{300-x}{95}=0\)
\(\Leftrightarrow\left(300-x\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}\right)=0\)
\(\Leftrightarrow300-x=0\left(vì\frac{1}{99}+\frac{1}{97}+\frac{1}{95}>0\right)\)
\(\Leftrightarrow x=300\)
vậy..........
1. \(\left(x+1\right)^2-3\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x+1-3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+1=0\\x+1-3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-1\\x+1=3\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=-1\\x=2\end{cases}}}\)
Vậy ...
\(x\left(x+2\right)-3\left(-x-2\right)=0\)
\(\Leftrightarrow x^2+2x+3x+6=0\)
\(\Leftrightarrow x^2+5x+6=0\)
\(\Leftrightarrow\left(x+2\right)\left(x+3\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x+2=0\\x+3=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=-2\\x=-3\end{cases}}}\)
Vậy ...
Còn cậu nữa chịu rồi !
câu 2 nhé :
\(3x\left(2x-8\right)-\left(2x-8\right)^2=0\)
câu này em phải sử dụng tam thức bậc 2 liệu em đã học chưa z :(????
1)a2(b-c)+b2(c-a)+c2(a-b)
=a2b-a2c+b2c-b2a+c2a-c2b
=(a2b-c2b)+(b2c-b2a)+(c2a-a2c)
=b.(a2-c2)-b2.(a-c)-ac.(a-c)
=b.(a-c)(a+c)-b2(a-c)-ac(a-c)
=(a-c)(ab+bc-b2-ac)
=(a-c)[(ab-ac)+(bc-b2)]
=(a-c)[a.(b-c)-b.(b-c)]
=(a-c)(b-c)(a-b)
(x-1)2-9=0
( x-1)2= 0+9
(x-1)2=9
( x-1)2= 32
=> x-1= 3
x= 3+1
x= 4
Vậy.....
bài này k đến lớp 8 đâu
\(\left(\text{x-1}\right)^2-9=0\)
<=>\(\left(x-1\right)^2=9\)
<=>\(x-1=3\)
<=>x=4
(x-10)2-125=x(x-15)-5
(x−10)^2−125=x(x−15)−5
Step 1: Simplify both sides of the equation.
x^2−20x−25=x^2−15x−5
<=>x^2−20x−25−x^2=x^2−15x−5−x^2
−20x−25=−15x−5
<=>−20x−25+15x=−15x−5+15x
−5x−25=−5
<=>−5x−25+25=−5+25
−5x=20
\(\frac{-5x}{-5}=\frac{20}{-5}\)
=> x=-4