Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x^2+1\right)\left(x-\frac{1}{2}\right)=0\)
Vì x2 > 0 => x2+1 >0
=> \(x-\frac{1}{2}=0\)
=> \(x=\frac{1}{2}\)
\(\Leftrightarrow x^2-3x+2=0\)
\(\Leftrightarrow x^2-x-2x-2=0\)
\(\Leftrightarrow x\left(x-1\right)-2\left(x-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x-2=0\\x-1=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2\\x=1\end{cases}}}\)
*) \(x^2-2=3x-4\)
*) x2-2=3x-4
<=> x2-2-3x+4=0
<=> x2-3x+2=0
<=> x2-x-2x+2=0
<=> x(x-1)-2(x-1)=0
<=> (x-1)(x-2)=0
\(\Leftrightarrow\orbr{\begin{cases}x-1=0\\x-2=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\\x=2\end{cases}}}\)
\(\left|2x-3\right|-4x-9=0\)
<=> \(\left|2x-3\right|=4x+9\)
<=> \(\orbr{\begin{cases}2x-3=4x+9\left(x\ge\frac{3}{2}\right)\\3-2x=4x+9\left(x< \frac{3}{2}\right)\end{cases}}\) <=> \(\orbr{\begin{cases}2x=-12\\6x=-6\end{cases}}\) <=> \(\orbr{\begin{cases}x=-6\left(ktm\right)\\x=-1\left(tm\right)\end{cases}}\)
\(\left(x+1\right)^2-\left|5-3x\right|-x=x\left(x+2\right)+4\)
<=> \(\left|5-3x\right|=x^2+2x+1-x-x^2-2x-4\)
<=> \(\left|5-3x\right|=-x-3\)
<=> \(\orbr{\begin{cases}5-3x=-x-3\left(x\le\frac{5}{3}\right)\\5-3x=x+3\left(x>\frac{5}{3}\right)\end{cases}}\) <=> \(\orbr{\begin{cases}2x=8\\4x=2\end{cases}}\) <=> \(\orbr{\begin{cases}x=4\left(ktm\right)\\x=\frac{1}{2}\left(ktm\right)\end{cases}}\)
=> pt vô nghiệm
pt <=> x^4+x^3+x^2+x^2+x+1=0
<=> x^4+x^2+x^3+x+x^2+1=0
<=> x^2(x^2+1)+x(x^2+1)+(x^2+1)=0
<=>(x^2+x+1)(x^2+1)=0
<=> x^2+x+1=0 (Vô nghiệm)
hoặc x^2+1=0 (vô lý)
=>pt vô nghiệm
tk mk nhé
\(a,\Leftrightarrow x^2-2x-x^2+1=0\\ \Leftrightarrow-2x+1=0\Leftrightarrow x=\dfrac{1}{2}\\ b,\Leftrightarrow\left(2x-1-x-4\right)\left(2x-1+x+4\right)=0\\ \Leftrightarrow\left(x-5\right)\left(3x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\end{matrix}\right.\)
a: \(P=\dfrac{8+5x-2x-8}{x\left(x+4\right)}=\dfrac{3x}{x\left(x+4\right)}=\dfrac{3}{x+4}\)
b: Khi x=1/2 thì P=3/(1/2+4)=3:9/2=3*2/9=6/9=2/3
Đặt \(u=x^2-x\)
Phương trình trở thành \(u^2-4u+4=0\)
\(\Leftrightarrow\left(u-2\right)^2=0\)
\(\Leftrightarrow u-2=0\)
\(\Rightarrow x^2-x=2\)
\(\Rightarrow x^2-x-2=0\)
Ta có \(\Delta=1^2+4.2=9,\sqrt{\Delta}=3\)
\(\Rightarrow\orbr{\begin{cases}x=\frac{1+3}{2}=2\\x=\frac{1-3}{2}=-1\end{cases}}\)
Đặt \(2x+1=w\)
Phương trình trở thành \(w^2-w=2\)
\(\Rightarrow\orbr{\begin{cases}w=2\\w=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}2x+1=2\\2x+1=-1\end{cases}}\)
\(\Leftrightarrow\orbr{\begin{cases}x=\frac{1}{2}\\x=-1\end{cases}}\)
\(\Rightarrow\left(x-1-2\right)\left(x-1+2\right)=0\)
\(\Rightarrow\orbr{\begin{cases}x=3\\x=-1\end{cases}}\)