![](https://rs.olm.vn/images/avt/0.png?1311)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
a, 16x2 - (4x - 5)2 = 15
16x2 - 4x2 - 52 = 15
12x2 - 52 = 15
12x2 - 25 = 15
2x2 = 15 + 25 = 40
x2 = 40 : 2
x2 = 20
=> \(x=\sqrt{20}\)
Các câu kia tương tự
![](https://rs.olm.vn/images/avt/0.png?1311)
\(a,\left(6x+1\right)\left(x+2\right)-2x\left(3x-5\right)\)
\(=6x^2+12x+x+2-6x^2+10x\)
\(=23x+2\)
a) (6x + 1)(x + 2) - 2x(3x - 5)
= 6x2 + 12x + x + 2 - 6x2 + 10x
= (6x2 - 6x2) + (12x + x + 10x) + 2
= 23x + 2
b) (2x - 1)2 - (2x - 3)(2x + 3)
= 4x2 - 4x + 1 - 4x2 + 9
= (4x2 - 4x2) - 4x + (1 + 9)
= -4x + 10
c) (2x - 3)3 - (3x + 1)(5 - 4x) - 16x2
= 8x3 - 36x2 + 54x - 15x + 12x2 - 5 + 4x - 16x2
= 8x3 - (36x2 - 12x2 + 16x2) + (54x - 15x + 4x) - 5
= 8x3 - 40x2 + 43x - 5
d) (3x + 2) - (x - 5) - x(3x - 13)
= 3x + 2 - x + 5 - 3x2 + 13x
= (3x - x + 13x) + (2 + 5) - 3x2
= 15x + 7 - 3x2
![](https://rs.olm.vn/images/avt/0.png?1311)
a) \(\Leftrightarrow16x^2-\left(16x^2-40x+25\right)=15\)
\(\Leftrightarrow16^2-16x^2+40x+25-15=0\)
\(\Leftrightarrow40x+10=0\)
\(\Leftrightarrow x=-\frac{10}{40}=-\frac{1}{4}\)
b)\(\Leftrightarrow4x^2+12x+9-4\left(x^2-1\right)=49\)
\(\Leftrightarrow4x^2+12x+9-4x^2+4-49=0\)
\(\Leftrightarrow12x-36=0\)
\(\Leftrightarrow x=\frac{36}{12}=3\)
c) \(\Leftrightarrow9x^2-6x+1-\left(9x^2-12x+4\right)=0\)
\(\Leftrightarrow9x^2-6x+1-9x^2+12x-4=0\)
\(\Leftrightarrow6x-3=0\)
\(\Leftrightarrow x=\frac{3}{6}=\frac{1}{2}\)
nha Nhấp Đúng nha . Chúc bạn học tốt!!!!Cảm ơn !
![](https://rs.olm.vn/images/avt/0.png?1311)
a) 9x2 - 1 = (3x + 1)(2x - 3)
=> 9x2 - 1 = 6x2 - 9x + 2x - 3
=> 9x2 - 6x2 + 7x - 1 + 3 = 0
=> 3x2 + 7x + 2 = 0
=> 3x2 + 6x + x + 2 = 0
=> 3x(x + 2) + (x + 2) = 0
=> (3x + 1)(x + 2) = 0
=>\(\orbr{\begin{cases}3x+1=0\\x+2=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-2\end{cases}}\)
b) 2(9x2 + 6x + 1) = (3x + 1)(x - 2)
=> 2(3x + 1)2 - (3x + 1)(x - 2) = 0
=> (3x + 1)(6x + 2 - x + 2) = 0
=> (3x + 1)(5x +4 ) = 0
=> \(\orbr{\begin{cases}3x+1=0\\5x+4=0\end{cases}}\)
=> \(\orbr{\begin{cases}x=-\frac{1}{3}\\x=-\frac{4}{5}\end{cases}}\)
c) 27x2(x + 3) - 12(x2 + 3x) = 0
=> 27x2(x + 3) - 12x(x + 3) = 0
=> 3x(9x - 4)(x + 3) = 0
=> 3x = 0
9x - 4 = 0
x + 3 = 0
=> x = 0
x = 4/9
x = -3
d) 16x2 - 8x + 1 = 4(x + 3)(4x - 1)
=> (4x - 1)2 - 4(x + 3)(4x - 1) = 0
=> (4x - 1)(4x - 1 - 4x - 12) = 0
=> 4x - 1 = 0
=> x = 1/4
![](https://rs.olm.vn/images/avt/0.png?1311)
1.\(16x^3+54y^3=2\left[\left(2x\right)^3+\left(3y\right)^3\right]=2\left(2x+3y\right)\left(4x^2-6xy+9y^3\right)\)
2.\(x^5-3x^4+3x^3-x^2=x^2\left(x^3-3x^2+3x-1\right)=x^2\left(x-1\right)^3\)
3.\(16x-5x^2-3=-5x^2+15x+x-3=-5x\left(x-3\right)+\left(x-3\right)=\left(x-3\right)\left(1-5x\right)\)
4.\(x^2+4x+3=x^2+x+3x+3=x\left(x+1\right)+3\left(x+1\right)=\left(x+1\right)\left(x+3\right)\)
5.\(x^4+4=x^4+4x^2+4-4x^2=\left(x^2+2\right)^2-4x^2=\left(x^2+2-2x\right)\left(x^2+2+2x\right)\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(16x-5x^2-3\)
\(=-5x^2+16x-3\)
\(=-5x^2+15x+x-3\)
\(=\left(-5x^2+15x\right)+\left(x-3\right)\)
\(=-5x.\left(x-3\right)+\left(x-3\right)\)
\(=\left(-5x+1\right).\left(x-3\right)\)
\(2x^2+7x+5\)
\(=2x^2+2x+5x+5\)
\(=\left(2x^2+2x\right)+\left(5x+5\right)\)
\(=2x.\left(x+1\right)+5.\left(x+1\right)\)
\(=\left(2x+5\right).\left(x+1\right)\)
\(2x^2+3x+5\) (Bạn xem lại đề nhé.)
\(x^3-3x^2+1-3x\)
\(=\left(x^3+1\right)-\left(3x^2+3x\right)\)
\(=\left(x+1\right).\left(x^2-x+1\right)-3x.\left(x+1\right)\)
\(=\left(x+1\right).\left(x^2-x+1-3x\right)\)
\(=\left(x+1\right).\left(x^2-4x+1\right)\)
\(x^2-4x-5\)
\(=x^2-5x+x-5\)
\(=\left(x^2-5x\right)+\left(x-5\right)\)
\(=x.\left(x-5\right)+\left(x-5\right)\)
\(=\left(x+1\right).\left(x-5\right)\)
\(\left(a^2+1\right)^2-4a^2\)
\(=\left(a^2+1\right)^2-\left(2a\right)^2\)
\(=\left(a^2-2a+1\right).\left(a^2+2a+1\right)\)
\(=\left(a-1\right)^2.\left(a+1\right)^2\)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^4-3x^3+4x^2-3x-1=0\)
\(\Leftrightarrow x^4+x^3+2x^3+2x^2+2x^2+2x+x+1=0\)
\(\Leftrightarrow x^3\left(x+1\right)+2x^2\left(x+1\right)+2x\left(x+1\right)+\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x^3+2x^2+2x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow(x^3+x^2+x^2+x+x+1)\left(x+1\right)=0\)
\(\Leftrightarrow[x^2\left(x+1\right)+x\left(x+1\right)+\left(x+1\right)]\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)\left(x^2+x+1\right)\left(x+1\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2\left(x^2+x+1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}(x+1)^2=0\\x^2+x+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x+1=0\\\varnothing\end{cases}}\Rightarrow x=-1\)
\(\left(x-1\right)^2+2\left(x-1\right)\left(3x+1\right)+\left(3x+1\right)^2-16x^2\)
\(=\left(x-1+3x+1\right)^2-16x^2\)
\(=\left(4x\right)^2-16x^2\)
\(=16x^2-16x^2\)
\(=0\)