Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{3x}{4}+\frac{x}{4}+\frac{1}{x}\ge\frac{3x}{4}+2\sqrt{\frac{x}{4x}}\ge\frac{3.2}{4}+1=\frac{5}{2}\)
\(A_{min}=\frac{5}{2}\) khi \(x=2\)
\(B=\frac{24x}{25}+\frac{x}{25}+\frac{1}{x}\ge\frac{24x}{25}+2\sqrt{\frac{x}{25x}}\ge\frac{24.5}{25}+\frac{2}{5}=\frac{26}{5}\)
\(B_{min}=\frac{26}{5}\) khi \(x=5\)
Câu C bạn coi lại đề, nếu đúng thế này thì ko tồn tại min
Minh bi nham dau bai, chi co 1 thua so \(\dfrac{2}{x}\) thoi nhe!
a: \(=\dfrac{3}{2}\sqrt{6}+\dfrac{2}{3}\sqrt{6}-2\sqrt{3}=\dfrac{13}{6}\sqrt{6}-2\sqrt{3}\)
b: \(VT=\dfrac{\sqrt{xy}\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\cdot\left(\sqrt{x}+\sqrt{y}\right)=\left(\sqrt{x}+\sqrt{y}\right)^2\)
c: \(VT=\dfrac{\sqrt{y}}{\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)}+\dfrac{\sqrt{x}}{\sqrt{y}\left(\sqrt{y}-\sqrt{x}\right)}\)
\(=\dfrac{y-x}{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}=\dfrac{-\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{xy}}\)
a: \(=\dfrac{\left(1-\sqrt{2}\right)^2}{1-\sqrt{2}}=1-\sqrt{2}\)
b: \(=\dfrac{\sqrt{xy}\left(\sqrt{x}-\sqrt{y}\right)}{x-y}=\dfrac{\sqrt{xy}}{\sqrt{x}+\sqrt{y}}\)
d: \(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(x+\sqrt{xy}+y\right)}{x-y}=\dfrac{x+\sqrt{xy}+y}{\sqrt{x}+\sqrt{y}}\)
a: \(A=6-3\sqrt{3}+4+\sqrt{3}+2\sqrt{3}=10\)
b: \(B=\sqrt{x}-\sqrt{y}-\sqrt{x}-\sqrt{y}=-2\sqrt{y}\)
c: \(C=\dfrac{\sqrt{3}-1}{\sqrt{6}-\sqrt{2}}=\dfrac{1}{\sqrt{2}}=\dfrac{\sqrt{2}}{2}\)
Ta có \(P^2=\left(\sum\dfrac{x}{\sqrt{y}}\right)^2=\sum\dfrac{x^2}{y}+2\left(\sum\dfrac{xy}{\sqrt{yz}}\right)\)
Mà \(\dfrac{x^2}{y}+\dfrac{xy}{\sqrt{yz}}+\dfrac{xy}{\sqrt{yz}}+z\ge4\sqrt[4]{x^4}=4x\)
Tương tự rồi cộng lại, ta có
\(P^2+x+y+z\ge4\left(x+y+z\right)\Rightarrow P^2\ge3\left(x+y+z\right)=36\Rightarrow P\ge6\)
\(P=\dfrac{6}{x}+\dfrac{3}{2}x+\dfrac{24}{y}+\dfrac{3}{2}y-\dfrac{1}{2}\left(x+y\right)\ge2\sqrt{6.\dfrac{3}{2}}+2\sqrt{24.\dfrac{3}{2}}-\dfrac{1}{2}.6=15\Rightarrow min=15\Leftrightarrow x=2;y=4\)