\(x,y,z\in Z\). Chứng minh rằng \(xyz\)
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2018

Với x,y,z \(\in N\)

Chứng tỏ : \((100x+10y+z)⋮21\Leftrightarrow(x-2y+4z)⋮21\)

Giải :

100x + 10y + z chia hết cho 21 nên cũng chia hết cho 3 và 7

Ta có : x - 2y + 4z = \((100x+10y+z)-(99x+12y-3z)\)mà 100x + 10y + z và 99x + 12y - 3z đều chia hết cho 3

nên x - 2y + 4z chia hết cho 3

Có \(2\cdot(x-2y+4z)=(100x+10y+z)-(98x-14y+7z)\)mà 100x + 10y + z và 98x + 14y - 7z đều chia hết cho 7 nên \(2\cdot(x-2y+4z)⋮7\)mà 2 không chia hết cho 7 nên x - 2y + 4z chia hết cho 7

=> x - 2y + 4z chia hết cho 3 và 7 nên sẽ chia hết cho 21

Chúc bạn hok tốt :>

23 tháng 7 2016

Theo đầu bài ta có:
\(\hept{\begin{cases}A=x^2yz=xyz\cdot x\\B=xy^2z=xyz\cdot y\\C=xyz^2=xyz\cdot z\end{cases}}\)
\(\Rightarrow A+B+C=xyz\cdot x+xyz\cdot y+xyz\cdot z\)
\(\Rightarrow A+B+C=xyz\left(x+y+z\right)\)
Mà \(x+y+z=1\Rightarrow A+B+C=xyz\) ( đpcm )

23 tháng 7 2016

Ta có 

\(\hept{\begin{cases}A=x^2yz=xyz.x\\B=xy^2z=xyz.y\\C=xyz^2=xyz.z\end{cases}}\)

\(\Rightarrow A+B+C=xyz.x+xyz.y+xyz.z\)

\(\Rightarrow A+B+C=xyz.\left(x+y+z\right)\)

Mà \(x+y+z=1\Rightarrow A+B+C=xyz\)

31 tháng 7 2020

2x = 3y = 4z 

=> \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)

=> \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có 

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)

=> \(\hept{\begin{cases}x=18\\y=12\\z=9\end{cases}}\)

31 tháng 7 2020

Ta có: \(2x=3y=4z\) nên \(\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\), suy ra \(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{x+y-z}{6+4-3}=\frac{21}{7}=3\)

\(\Rightarrow\hept{\begin{cases}x=3.6=18\\y=3.4=12\\z=3.3=9\end{cases}}\)

 Vậy \(x=18\)\(y=12\) và \(z=9\).

Bài 1: 

\(S=4\left(\dfrac{1}{1\cdot7}+\dfrac{1}{7\cdot13}+...+\dfrac{1}{43\cdot49}\right)\)

\(=\dfrac{4}{6}\left(\dfrac{6}{1\cdot7}+\dfrac{6}{7\cdot13}+...+\dfrac{6}{43\cdot49}\right)\)

\(=\dfrac{2}{3}\left(1-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{13}+...+\dfrac{1}{43}-\dfrac{1}{49}\right)\)

\(=\dfrac{2}{3}\cdot\dfrac{48}{49}=\dfrac{96}{147}=\dfrac{32}{49}\)

Bài 3: 

Theo đề, ta có: 

\(\dfrac{a}{b}=\dfrac{a+10}{b+10}\)

=>ab+10a=ab+10b

=>10a=10b

=>a/b=1

15 tháng 8 2017

Cậu có chắc của lớp 6 không ???

Áp dụng Bất đẳng thức Cauchy-Schwarz dạng Engel , có :

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{\left(1+1+1\right)^2}{x+y+z}=\frac{9}{6}=\frac{3}{2}\) 

Đẳng thức xảy ra : \(\Leftrightarrow\frac{1}{x}=\frac{1}{y}=\frac{1}{z}=\frac{1}{2}\)

24 tháng 4 2019

Xét \(\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)=3+\frac{x}{y}+\frac{y}{x}+\frac{y}{z}+\frac{z}{y}+\frac{x}{z}+\frac{z}{x}\)

Với \(x,y,z\inℕ^∗\)áp dụng bất đẳng thức Cô si  \(\frac{x}{y}+\frac{y}{x}\ge2\sqrt{\frac{x}{y}.\frac{y}{x}}=2\),\(\frac{y}{z}+\frac{z}{y}\ge2\sqrt{\frac{y}{z}.\frac{z}{y}}=2\),\(\frac{x}{z}+\frac{z}{x}\ge2\sqrt{\frac{x}{z}.\frac{z}{x}}=2\)

\(\Rightarrow\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\left(x+y+z\right)\ge3+2+2+2=9\)

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}=\frac{9}{6}=\frac{3}{2}\left(x+y+z=6theogt\right)\)

31 tháng 1 2018

1/Chứng tỏ rằng

a,\(n^3\) - n \(⋮\) 6

Ta có : \(n^3\) -n =n.(\(n^2\) -1)=n.(n-1).(n+1)=(n-1).n.(n+1)

Vì n-1 , n , n+1 là 3 số hạng liên tiếp

\(\Rightarrow\) (n-1).n.(n+1)\(⋮\) 3 (1)

Lại có : n-1, n là 2 số hạng liên tiếp

=> (n-1).n \(⋮\) 2

=> (n-1) .n.(n+1) \(⋮\) 2 (2)

Từ (1) và (2) ta thấy:

(n-1).n.(n+1) \(⋮\) 2,3 mà (2,3) =1

=(n-1) .n.(n+1)\(⋮\) 6 (đpcm)

Vậy \(n^3\) -n \(⋮\) 6

b, Ta có : S= 1-3+3^2-3^3+. . . +3^98-3^99

S= (1-3+3^2-3^3) + . . . +(3^96-3^97 + 3^98-3^99)

S= (-20).1 + . . . + 3^96 . (-20)

S= (-20) . ( 1+ . . . + 3^96) \(⋮\) 20 ( đpcm)

c, Vì 6x + 11y chia hết cho 31

=> 6x+11y+31y chia hết cho 31

=> 6x+ 42y chia hết cho 31

=> 6(x+7y) chia hết cho 31

Mà ( 6,1) = 1 nên x+7y chia hết cho 31 (đpcm)