Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề bài: \(x+y=1\Leftrightarrow x=1-y\)
Khi đó:
\(A=2\left(x^3+y^3\right)-3\left(x^2+y^2\right)+30\)
\(A=2\left[\left(1-y\right)^3+y^3\right]-3\left[\left(1-y\right)^2+y^2\right]+30\)
\(A=2\left(1-3y+3y^2-y^3+y^3\right)-3\left(1-2y+y^2+y^2\right)+30\)
\(A=2\left(1-3y+3y^2\right)-3\left(1-2y+2y^2\right)+30\)
\(A=2-6y+6y^2-3+6y-6y^2+30\)
\(A=\left(2-3\right)+\left(6y-6y\right)+\left(6y^2-6y^2\right)+30\)
\(A=-1+30=29\)
\(x^3+y^3\) làm sao có thể bằng \(\left(1-y\right)^3+y^3\) đc vậy bạn
Nhân 2 vế của pt đầu với \(x-\sqrt{x^2+3}\) đc:
\(y+\sqrt{y^2+3}=\sqrt{x^2+3}-x\)
\(\Rightarrow x+y=\sqrt{x^2+3}-\sqrt{y^2+3}\left(1\right)\)
Tương tự nhân 2 vế của pt đầu với \(y-\sqrt{y^2+3}\) đc:
\(x+y=\sqrt{y^2+3}-\sqrt{x^2+3}\left(2\right)\)
Từ (1) và (2) =>2(x+y)=0
=>x+y=0<=>x=-y
<=>x2013=-y2013
<=>x2013+y2013=0
A=x2013+y2013+1=1
Bài 1
Từ giả thiết, bình phương 2 vế, ta được:
\(x^2y^2+\left(x^2+1\right)\left(y^2+1\right)+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2015\)
\(\Leftrightarrow2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}\sqrt{y^2+1}=2014.\)
\(A^2=x^2\left(y^2+1\right)+y^2\left(x^2+1\right)+2x\sqrt{y^2+1}.y\sqrt{x^2+1}\)
\(=2x^2y^2+x^2+y^2+2xy\sqrt{x^2+1}.\sqrt{y^2+1}\)
\(=2014\)
\(\Rightarrow A=\sqrt{2014}.\)
Bài 2:
Đặt \(\sqrt{2015}=a>0\)
\(\left(x+\sqrt{x^2+a}\right)\left(y+\sqrt{y^2+a}\right)=a\text{ }\left(1\right)\)
Do \(\sqrt{y^2+a}-y>\sqrt{y^2}-y=\left|y\right|-y\ge0\) nên ta nhân cả 2 vế với \(\sqrt{y^2+a}-y\)
\(\left(1\right)\Leftrightarrow\left(x+\sqrt{x^2+a}\right)\left[\left(y^2+a\right)-y^2\right]=a.\left(\sqrt{y^2+a}-y\right)\)
\(\Leftrightarrow\sqrt{x^2+a}+x=\sqrt{y^2+a}-y\)
Tương tự ta có: \(\sqrt{y^2+a}+y=\sqrt{x^2+a}-x\)
Cộng theo vế 2 phương trình trên, ta được \(x+y=-\left(x+y\right)\Leftrightarrow x+y=0\)
Bài 3
Áp dụng bất đẳng thức Côsi
\(x\sqrt{x}+y\sqrt{y}+z\sqrt{z}\ge3\sqrt[3]{x\sqrt{x}.y\sqrt{y}.z\sqrt{z}}=3\sqrt{xyz}\)
Dấu bằng xảy ra khi và chỉ khi \(x=y=z\)
Thay vào tính được \(A=2.2.2=8\text{ }\left(x=y=z\ne0\right).\)
=29
Dung day, to vua thi xong.