\(x+y=1\) , thì giá trị biểu thức \(x^3+y^3+3xy\) l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 10 2015

\(x^3+y^3+3xy=x^3+3x^2y+3xy^2+y^3-3x^2y-3xy^2+3xy\)

\(=\left(x+y\right)^3-3xy.\left(x+y-1\right)=1^3-3xy.\left(1-1\right)=1\)

31 tháng 7 2019

Ta có:\(10=2xyz\)

=> \(P=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+10}+\frac{10z}{10z+yz+10}\) 

        \(=\frac{1}{2x+2xz+1}+\frac{2xy}{y+2xy+2xyz}+\frac{2xyz^2}{2xyz^2+yz+2xyz}\)

          \(=\frac{1}{2x+2xz+1}+\frac{2x}{1+2x+2xz}+\frac{2xz}{2xz+1+2x}\)

          \(=1\)

Vậy P=1

   

9 tháng 6 2019

a) Để giá trị phân thức dc xác định thì x2 -1 # 0 <=> x2 # 1 <=> x # 1 và x # -1 ( giải thích: vì muốn phân thức xác định thì mẫu thức phải khác 0)

(mình ko biết ghi dấu "khác" trong toán, nên ghi đỡ dấu thăng nha, sr bạn)

b) Ta có: x2 + 2x +1 / x2 -1 

       = (x + 1)2 / (x+1).(x-1)

       = (x+1).(x+1) / (x+1).(x-1)

       = x+1 / x-1

Vậy phân thức rút gọn của phân thức đã cho là x+1/ x-1

9 tháng 6 2019

de \(\frac{x^2+2x+1}{x^2-1}\)được xác định => x2-1 khác 0 => x khác +-1

\(\frac{x^2+2x+1}{x^2-1}=\frac{\left(x+1\right)^2}{\left(x+1\right).\left(x-1\right)}=\frac{x+1}{x-1}\)

10 tháng 7 2018

1 c nha các bạn

9 tháng 8 2018

Ta có:\(P=x^3\left(z-y^2\right)+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2y^2z^2-x^2z^3-\left(y^3z^2-z^3y\right)+y^3x-xyz\)

\(\Rightarrow P=x^3\left(z-y^2\right)+x^2z^2\left(y^2-z\right)-yz^2\left(y^2-z\right)+xy\left(y^2-z\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3-yz^2+xy\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2z^2-x^3+xy-yz^2\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)+y\left(x-z^2\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(x^2\left(z^2-x\right)-y\left(z^2-x\right)\right)\)

\(\Rightarrow P=\left(y^2-z\right)\left(z^2-x\right)\left(x^2-y\right)\)

\(\Rightarrow P=abc\)

Vì a, b, c là hằng số nên P có giá trị không phụ thuộc vào x, y, z

2 tháng 1 2018

Ta có \(Q=x^2+y^2+36-2xy-12x+12y+5y^2-10y+5+1976\)

               \(=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\ge0\)

=>Q luôn nhận giá trị dương với mọi x,y (ĐPCM)

^_^

\(Q=x^2+6y^2-2xy-12x+2y+2017\)

\(Q=\left(x^2-2xy+y^2\right)-2\left(x-y\right)6+36+5y^2-10x+5+1976\)

\(Q=\left(x-y\right)^2-12\left(x-y\right)+64+5\left(y^2-2y+1\right)+1976\)

\(Q=\left(x-y-6\right)^2+5\left(y-1\right)^2+1976\)

Mà, \(\left(x-y-6\right)^2,5\left(y-1\right)^2\ge0\)

\(\Rightarrow Q>0\)

23 tháng 7 2019

Cách 1 : Chia \(f(x)\)cho x2 + x + 1

Ta được dư là : \((2-a)x+(b+1-a)=r(x)\)

Ta có phép chia hết khi và chỉ khi \(r(x)=0\), tức là : \(\hept{\begin{cases}2-a=0\\b+1-a=0\end{cases}\Rightarrow}a=2,b=1\)

Cách 2 : Chú ý rằng \(f(x)\)bậc 3 , còn đa thức chia là bậc 2, nên thương phải là một nhị thức bậc nhất, có dạng x + k . Từ đó :

\((x+k)(x^2+x+1)=x^3+ax^2+2x+b\)

\(\Leftrightarrow x^3+ax^2+2x+b=x^3+(k+1)x^2+(k+1)x+k\)

Hệ số của các hạng tử cùng bậc phải bằng nhau , suy ra a = k + 1 ; 2 = k +  1 ; b = k. Từ đây ta có : k = 1 , a = 2 , b = 1

26 tháng 2 2016

\(=\frac{1}{3}\) chắc chắn đúng luôn

Nhớ ủng hộ

6 tháng 4 2019

_Solution:

Prove with Cauchy-Schwarz inequality engel form, we have:

\(A=\frac{1}{x^3+3xy^2}+\frac{1}{y^3+3x^2y}\ge\frac{4}{x^3+y^3+3xy^2+3x^2y}\)

\(A\ge\frac{4}{\left(x+y\right)^3}\)

Other way: \(x+y\le1\Rightarrow\left(x+y\right)^3\le1\Rightarrow\frac{1}{\left(x+y\right)^3}\ge1\)

\(\Rightarrow A\ge4\) (proof)

We have ''='' \(\Leftrightarrow x=y=\frac{1}{2}\).

8 tháng 1 2017

m=-3 có trong mấy cái hàng đẳng thức đáng nhớ

10 tháng 1 2017

tụi nó chắc ko học HĐT của 3 số

7 tháng 7 2019

a) Ta có:

x + y = 3

=> ( x + y)2 = 9

=> x2 + 2xy + y2 = 9

=> 10 + 2xy = 9

=> 2xy = 9 - 10 = -1

=> xy = -1/2 

Ta có:

 x3 + y3 = (x + y)(x2 - xy + y2)

 = 3.(10 + 1/2) = 63/2

b) Ta có: x + y = a

=> (x + y)2 = a2

=> x2 + 2xy + y2 = a2

=> b + 2xy = a2

=> xy = (a2 - b)/2

Ta có:  x3 + y3 = (x + y)(x2 + xy + y2)

 = a[b + (a2 - b )/2] = ab + (a3 - b)/2.

7 tháng 7 2019

Làm b) công thức tổng quát luôn

x+y=a => (x+y)^2 =a^2 => x^2+y^2+2xy=a^2

Thay x^2+y^2=b  vào ta được:

b+2xy=a^2 => xy=(a^2-b)/2 

TA có x^3+y^3 =(x+y)(x^2+y^2 -xy)= a [b+(a^2-b)/2] =ab +(a^3-ab)/2=ab/2+a^3/2