Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT cô si cho:
!)\(\dfrac{3}{x}+\dfrac{9}{y}\)\(\ge2\sqrt{\dfrac{3}{x}.\dfrac{9}{y}}\ge2\sqrt{\dfrac{3.9}{xy}}=2\sqrt{\dfrac{27}{3}}=6\)
!!) Tương tự ta có:
\(3x+y\ge2\sqrt{3xy}\ge6\)
Vậy: K=\(\dfrac{3}{x}+\dfrac{9}{y}-\dfrac{26}{3x+y}\)\(\ge6-\dfrac{26}{6}=\dfrac{5}{3}\)
Min K=\(\dfrac{5}{3}\) Dấu "=' xảy ra khi y=1 và x=3
Rút gọn bt:
Câu 1: a, \(\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)
b, \(\sqrt{25a}+2\sqrt{45a}-3\sqrt{80a}+2\sqrt{16a}\left(a\ge0\right)\)ư
Câu 2: Cho bt: P =\(\left(1+\frac{\sqrt{a}}{a+1}\right):\left(\frac{1}{\sqrt{a}-1}-\frac{2\sqrt{a}}{a\sqrt{a}+\sqrt{a}-a-1}\right)\)
a, Tìm ĐKXĐ . Rút gọn P
B, Tìm x nguyên để P có gt nguyên
c, Tìm GTNN của P với a >1
Câu 3: Giair các pt
a, \(\sqrt{\left(2x-1\right)^2}=4\)
b, \(\sqrt{4x+4}+\sqrt{9x+9}-8\sqrt{\frac{x+1}{16}}=5\)
\(a.\)
\(\text{*)}\) Áp dụng bđt \(AM-GM\) cho hai số thực dương \(x,y,\) ta có:
\(x+y\ge2\sqrt{xy}=2\) (do \(xy=1\) )
\(\Rightarrow\) \(3\left(x+y\right)\ge6\)
nên \(D=x^2+y^2+\frac{9}{x^2+y^2+1}+3\left(x+y\right)\ge x^2+y^2+\frac{9}{x^2+y^2+1}+6\)
\(\Rightarrow\) \(D\ge\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]+5\)
\(\text{*)}\) Tiếp tục áp dụng bđt \(AM-GM\) cho bộ số loại hai số không âm gồm \(\left(x^2+y^2+1;\frac{9}{x^2+y^2+1}\right),\) ta có:
\(\left[\left(x^2+y^2+1\right)+\frac{9}{x^2+y^2+1}\right]\ge2\sqrt{\left(x^2+y^2+1\right).\frac{9}{\left(x^2+y^2+1\right)}}=6\)
Do đó, \(D\ge6+5=11\)
Dấu \("="\) xảy ra khi \(x=y=1\)
Vậy, \(D_{min}=11\) \(\Leftrightarrow\) \(x=y=1\)
\(b.\) Bạn tìm điểm rơi rồi báo lại đây
\(a,\left(\sqrt{50}+\sqrt{48}-\sqrt{72}\right)2\sqrt{3}\)
\(=\left(5\sqrt{2}+4\sqrt{3}-6\sqrt{2}\right)2\sqrt{3}\)
\(=\left(4\sqrt{3}-\sqrt{2}\right)2\sqrt{3}\)
\(=24-2\sqrt{6}\)
Câu 3:
a: =>|2x-1|=4
=>2x-1=4 hoặc 2x-1=-4
=>x=-3/2 hoặc x=5/2
b: \(\Leftrightarrow2\sqrt{x+1}+3\sqrt{x+1}-2\sqrt{x+1}=5\)
=>3căn x+1=5
=>x+1=25/9
=>x=16/9
\(P=4\sqrt{x}+12+\dfrac{36}{\sqrt{x}-3}=4\left(\sqrt{x}-3\right)+\dfrac{36}{\sqrt{x}-3}+24\ge2\sqrt{\dfrac{4\left(\sqrt{x}-3\right).36}{\sqrt{x}-3}}+24=48\)
\(\Rightarrow P_{min}=48\)
Dấu "=" xảy ra khi \(4\left(\sqrt{x}-3\right)=\dfrac{36}{\sqrt{x}-3}\Rightarrow\left(\sqrt{x}-3\right)^2=9\Rightarrow x=36\)
Do bậc tử lớn hơn bậc mẫu nên \(P_{max}\) không tồn tại