K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2018

\(M=\frac{x^2+2x-9}{x-3}\)

\(=\frac{x^2-6x+9+8x-24+6}{x-3}\)

\(=\frac{\left(x-3\right)^2+8\left(x-3\right)+6}{x-3}\)

\(=x-3+8+\frac{6}{x-3}\)

Do \(x>3\Rightarrow x-3>0\)

Áp dụng BĐT Cauchy , ta có : 

\(x-3+\frac{6}{x-3}\ge2\sqrt{\left(x-3\right).\frac{6}{x-3}}=2\sqrt{6}\)

\(\Rightarrow M=x-3+\frac{6}{x-3}+8\ge2\sqrt{6}+8\)

\(\Rightarrow M\ge\sqrt{24}+8\)

Dấu " = " xảy ra \(\Leftrightarrow x-3=\frac{6}{x-3}\Leftrightarrow\left(x-3\right)^2=6\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{6}\\x-3=-\sqrt{6}\end{cases}\Leftrightarrow\orbr{\begin{cases}x=3+\sqrt{6}\left(TM\right)\\x=3-\sqrt{6}\left(L\right)\end{cases}}}\)

Vậy Min M là : \(\sqrt{24}+8\Leftrightarrow x=3+\sqrt{6}\)

NV
2 tháng 1 2019

\(P=\dfrac{x^2+2x-9}{x-3}=x+5+\dfrac{6}{x-3}=x-3+\dfrac{6}{x-3}+8\)

\(\Rightarrow P\ge2\sqrt{\left(x-3\right).\dfrac{6}{\left(x-3\right)}}+8=8+2\sqrt{6}\)

\(\Rightarrow P_{min}=8+2\sqrt{6}\) khi \(\left(x-3\right)^2=6\Rightarrow x=3+\sqrt{6}\)

2 tháng 1 2019

bạn có thể làm đầy đủ cho mik hiểu đc k

bắt đầu từ dòng thứ 2 mik đã k hiểu r

10 tháng 2 2019

1 ) \(B=\dfrac{x^2-2x+2011}{x^2}=1-\dfrac{2}{x}+\dfrac{2011}{x^2}\)

Đặt \(\dfrac{1}{x}=a\) , khi đó :

\(B=1-2a+2011a^2\)

\(=2011\left(a^2-2a.\dfrac{1}{2011}+\dfrac{1}{2011^2}\right)+\dfrac{2010}{2011}\)

\(=2011\left(a-\dfrac{1}{2011}\right)^2+\dfrac{2010}{2011}\ge\dfrac{2010}{2011}\)

Dấu " = " xảy ra \(\Leftrightarrow a=\dfrac{1}{2011}\Leftrightarrow x=2011\)

2 ) ĐKXĐ : \(x\ne-1\)\(C=\dfrac{3\left(x+1\right)}{x^3+x^2+x+1}=\dfrac{3\left(x+1\right)}{\left(x^2+1\right)\left(x+1\right)}=\dfrac{3}{x^2+1}\le\dfrac{3}{1}=3\)

Dấu " = " xảy ra \(\Leftrightarrow x=0\)

haha

12 tháng 4 2017

Bài 1: \(A=x^2-2x+3\)

\(=x^2-2x+1+2\)

\(=\left(x-1\right)^2+2\ge2\forall x\)

Đẳng thức xảy ra khi \(\left(x-1\right)^2=0\Rightarrow x=1\)

Bài 2:

\(2x^2+4x+11=2x^2+4x+2+9\)

\(=2\left(x^2+2x+1\right)+9\)

\(=2\left(x+1\right)^2+9\ge9>0\forall x\)