\(P=5x+\frac{180}{x-1}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2015

(x-1)2=180/5=36

=>x-1=6 (vì x>1)

=>x=7 chứ

22 tháng 10 2015

Sửa lại: Tìm GTNN

x > 1 nên x - 1 > 0

Áp dụng BĐT Cauchy ta có : P = \(5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5=2.30+6=65\)

Dấu "=" xảy ra <=> 5.(x - 1) = 180/(x-1) <=> (x -1)= 36 => x - 1 = 6 => x = 7

Vậy Min P = 65 khi x = 7

9 tháng 10 2015

\(A=5x-5+\frac{180}{x-1}+5=5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{\frac{5\left(x-1\right).180}{x-1}}+5\)

\(\ge2.30+5=65\)

Vậy GTNN là 65 tại x = 7 

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

17 tháng 10 2016

1/ Điều kiện xác định

\(\hept{\begin{cases}2IxI-1\ge0\\x\le0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ge0,5orx\le-0,5\\x\le0\end{cases}}\Leftrightarrow x\le-0,5}\)

Bình phương 2 vế ta được

\(x^2=2IxI-1\)

\(\Leftrightarrow\orbr{\begin{cases}2x=x^2+1\\2x=-x^2-1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=1\left(loai\right)\\x=-1\end{cases}}}\)

Vậy nghiệm pt là x = -1

2/ \(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\)

\(\ge2\sqrt{5\times180}+5=65\)

Đạt được khi x = 7

3/ \(\hept{\begin{cases}x\ge0\\-\sqrt{x}>-9\end{cases}\Leftrightarrow}\hept{\begin{cases}x\ge0\\\sqrt{x}< 9\end{cases}\Leftrightarrow0\le x< 81}\)

Có vô số giá trị thực x thỏa mãn cái đó

4/ \(\sqrt{x^2-2x+1}-\sqrt{x^2-4x+4}=x-3\)

\(\Leftrightarrow\sqrt{\left(x-1\right)^2}-\sqrt{\left(x-2\right)^2}=x-3\)

\(\Leftrightarrow Ix-1I-Ix-2I=x-3\)

Tới đây thì đơn giản rồi b tự làm nốt nhé

17 tháng 10 2016

1 / 

đây thuộc phương trình , phần mình rất yếu 

IxI không phải là giá trị tuyệt đối của x đâu

2 /

giá trị nhỏ nhất của x = 2

nếu vậy , A = 10 + 180 = 190

nhưng đây là kết quả quá lớn , ta phải tiếp tục cho x lớn hơn nữa để có kết quả nhỏ hơn

3 /  ; 4 /

chịu 

20 tháng 8 2016

1. Ta có : \(A=\frac{\left(x+4\right)\left(x+9\right)}{x}=\frac{x^2+13x+36}{x}=x+\frac{36}{x}+13\)

Áp dụng bđt Cauchy : \(x+\frac{36}{x}\ge2\sqrt{x.\frac{36}{x}}=12\)

\(\Rightarrow A\ge25\)

Vậy Min A = 25 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{36}{x}\end{cases}\) \(\Leftrightarrow x=6\)

20 tháng 8 2016

2. \(B=\frac{\left(x+100\right)^2}{x}=\frac{x^2+200x+100^2}{x}=x+\frac{100^2}{x}+200\)

Áp dụng bđt Cauchy : \(x+\frac{100^2}{x}\ge2\sqrt{x.\frac{100^2}{x}}=200\)

\(\Rightarrow B\ge400\)

Vậy Min B = 400 \(\Leftrightarrow\begin{cases}x>0\\x=\frac{100^2}{x}\end{cases}\) \(\Leftrightarrow x=100\)

2 tháng 11 2019

1.

Vì x>0 nên \(A=\frac{16x+4+\frac{1}{x}}{2}\)

Áp dụng bất đẳng thức Côsi cho 2 số dương

\(16x+\frac{1}{x}\ge2\sqrt{16x.\frac{1}{x}}=2.4=8\). Dấu "=" khi \(16x=\frac{1}{x}\Rightarrow x^2=\frac{1}{16}\Rightarrow x=\frac{1}{4}\)

\(A=\frac{16x+4+\frac{1}{x}}{2}\ge\frac{8+4}{2}=6\)

Vậy GTNN của A là 6 khi \(x=\frac{1}{4}\)

2.

\(B=\frac{1}{a}+\frac{1}{b}=\frac{a+b}{ab}=\frac{10}{ab}\)

Ta có: \(10=a+b\ge2\sqrt{ab}\Rightarrow\sqrt{ab}\le5\Rightarrow ab\le25\). Dấu "=" khi a = b = 5

\(\Rightarrow B=\frac{10}{ab}\ge\frac{10}{25}=\frac{2}{5}\)

Vậy GTNN của B là \(\frac{2}{5}\)khi a = b = 5