K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 5 2015

1.  x≥1 <=> \(\frac{1}{x}\le1\Leftrightarrow\frac{1}{x}+1\le2\Leftrightarrow A\le2\Rightarrow MaxA=2\Leftrightarrow x=1\)

2. Áp dụng bđt cosi cho x>0. ta có: \(x+\frac{1}{x}\ge2\sqrt{x.\frac{1}{x}}=2\Leftrightarrow P\ge2\Rightarrow MinP=2\Leftrightarrow x=\frac{1}{x}\Leftrightarrow x=1\)

 

21 tháng 5 2015

3: \(A=\frac{x^2+x+4}{x+1}=\frac{\left(x^2+2x+1\right)-\left(x+1\right)+4}{x+1}=x+1-1+\frac{4}{x+1}\)

áp dụng cosi cho 2 số dương ta có: \(x+1+\frac{4}{x+1}\ge2\sqrt{x+1.\frac{4}{x+1}}=2\Leftrightarrow A+1\ge2\Rightarrow A\ge3\Rightarrow MinA=3\Leftrightarrow x+1=\frac{4}{x+1}\Leftrightarrow x=1\)

29 tháng 12 2019

\(Q=\frac{1}{x^2+y^2}+\frac{2}{xy}+4xy+2016=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{4xy}+4xy+\frac{5}{4xy}+2016\)

Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\). Dấu "=" khi a=b (bạn tự chứng minh)

\(\frac{1}{x^2+y^2}+\frac{1}{2xy}\ge\frac{4}{\left(x+y\right)^2}=4\)

Vì x>0, y>0 nên xy>0

Áp dụng bất đẳng thức Cô si cho 2 số dương

\(\frac{1}{4xy}+4xy\ge2\sqrt{\frac{1}{4xy}.4xy}=2\)

Ta có: \(1=x+y\ge2\sqrt{xy}\Leftrightarrow\left(x+y\right)^2\ge4xy\Leftrightarrow xy\le\frac{\left(x+y\right)^2}{4}=\frac{1}{4}\Rightarrow\frac{5}{4xy}\ge5\)

Dấu "=" khi \(\hept{\begin{cases}x^2+y^2=2xy\\\frac{1}{4xy}=4xy\\x=y\end{cases}\Rightarrow x=y=\frac{1}{2}}\)

\(\Rightarrow Q\ge4+2+5+2016=2027\)

Vậy \(minQ=2027\)khi \(x=y=\frac{1}{2}\)

17 tháng 3 2020

\(\text{Ta có:}A+2=x^2+3x+\frac{1}{4}+2=x^2+3x+\frac{9}{4}=x^2+2.\frac{3}{2}x+\left(\frac{3}{2}\right)^2=\left(x+\frac{3}{2}\right)^2\ge0\)

\(\Rightarrow A+2\ge0\Rightarrow A\ge-2\)

Dấu "=" xảy ra khi: \(x+\frac{3}{2}=0\Leftrightarrow x=\frac{-3}{2}\)

24 tháng 6 2018

\(2=x+y\ge2\sqrt{xy}\Rightarrow xy\le1.\)

\(\left(x^4+1\right)\left(y^4+1\right)+2013\ge2x^2.2y^2+2013\ge4+2013=2017\)

Min=2017 

Dấu "=" xảy ra khi x=y=1

16 tháng 5 2019

Ta có \(x^2+y^2\ge2xy\)=>\(xy\le\frac{1}{2}\)

\(\frac{1}{A}=\frac{1}{-2xy}-\frac{1}{2}\le-1-\frac{1}{2}=-\frac{3}{2}\)

=> \(A\ge-\frac{2}{3}\)

\(MinA=-\frac{2}{3}\)khi \(x=y=\frac{\sqrt{2}}{2}\)

16 tháng 5 2019

Trần Phúc Khang: bài này cần gì phải làm phức tạp vậy a

c/m: \(xy\le\frac{1}{2}\)( như bài Trần Phúc Khang)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

\(A=\frac{-2xy}{1+xy}\ge\frac{-2.\frac{1}{2}}{1+\frac{1}{2}}=-\frac{1}{\frac{3}{2}}=-\frac{2}{3}\)

Dấu "=" xảy ra <=> x=y=\(\frac{1}{\sqrt{2}}\)

KL:.............................