Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng BĐT Cauchy-Schwarz ta có:
\(\dfrac{1}{\sqrt{x}+2\sqrt{y}}\le\dfrac{1}{9}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{y}}\right)\)
Tương tự cho 2 BĐT trên ta có:
\(\dfrac{1}{3}VP\le\dfrac{1}{9}\cdot3\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{\sqrt{x}}+\dfrac{1}{\sqrt{y}}+\dfrac{1}{\sqrt{z}}\right)=\dfrac{1}{3}VT\)
Xảy ra khi \(x=y=z\)
Hình như đề bn bị sai: cần chứng minh bất đẳng thức \(\ge2\)
Ta có: \(A=\sqrt{\dfrac{x}{y+z}}+\sqrt{\dfrac{y}{x+z}}+\sqrt{\dfrac{z}{x+y}}\)
\(A=\dfrac{\sqrt{x}}{\sqrt{y+z}}+\dfrac{\sqrt{y}}{\sqrt{x+z}}+\dfrac{\sqrt{z}}{\sqrt{x+y}}\)
\(A=\dfrac{x}{\sqrt{(y+z)x}}+\dfrac{y}{\sqrt{\left(x+z\right).y}}+\dfrac{z}{\sqrt{\left(x+y\right).z}}\ge\)
\(\ge\dfrac{x}{\dfrac{x+y+z}{2}}+\dfrac{y}{\dfrac{x+y+z}{2}}+\dfrac{z}{\dfrac{x+y+z}{2}}\)
\(=\dfrac{2\left(x+y+z\right)}{x+y+z}\Leftrightarrow A\ge2\)
Ta có : \(3\sqrt{xyz}=\sqrt{x}^2+\sqrt{y}^3+\sqrt{z}^3\ge3\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}=3\sqrt{x}\sqrt{y}\sqrt{z}=3\sqrt{xyz}.\)
Dấu = xảy ra
=> x =y =z
=> A = (1+1)(1+1)(1+1) =8
mk thấy nó sai sai . Tại sao 3\(\sqrt[3]{\sqrt{x}^3\sqrt{y}^3\sqrt{z}^3}\) = 3\(\sqrt{x}\sqrt{y}\sqrt{z}\)
BĐT cần chứng minh tương đương
\(VT\ge4\left(x+y+z\right)\)
\(\Leftrightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Theo BĐT Cauchy-Schwarz và AM-GM, ta có:
\(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge\dfrac{\left(y+z\right)\left(x+\sqrt{yz}\right)}{x}=y+z+\dfrac{\left(y+z\right)\sqrt{yz}}{x}\ge y+z+\dfrac{2yz}{x}\)
Suy ra: \(\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge2\left(x+y+z\right)-2\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)\)
Mặt khác, theo AM-GM:
\(\left(\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\right)^2\ge3\left(x^2+y^2+z^2\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\dfrac{yz}{x}+\dfrac{xz}{y}+\dfrac{xy}{z}\ge x+y+z\)
\(\Rightarrow\sum\dfrac{\left(y+z\right)\sqrt{\left(x+y\right)\left(x+z\right)}}{x}\ge4\left(x+y+z\right)\)
Đẳng thức xảy ra khi và chỉ khi \(x=y=z=\dfrac{\sqrt{2}}{3}\)
@Phương An
Lời giải:
Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=1\Leftrightarrow xy+yz+xz=xyz\)
\(\Rightarrow x^2+xy+yz+xz=x^2+xyz=x(x+yz)\)
\(\Leftrightarrow x+yz=\frac{x^2+xy+yz+xz}{x}=\frac{(x+y)(x+z)}{x}\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\)
Áp dụng BĐT Bunhiacopxky:\((x+y)(x+z)\geq (x+\sqrt{yz})^2\)
\(\Rightarrow \sqrt{x+yz}=\sqrt{\frac{(x+y)(x+z)}{x}}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}\)
Hoàn toàn tương tự:
\(\sqrt{y+xz}\geq \frac{y+\sqrt{xz}}{\sqrt{y}}\); \(\sqrt{z+xy}\geq \frac{z+\sqrt{xy}}{\sqrt{z}}\)
Cộng theo vế các BĐT đã thu được ta có:
\(\text{VT}\geq \frac{x+\sqrt{yz}}{\sqrt{x}}+\frac{y+\sqrt{xz}}{\sqrt{y}}+\frac{z+\sqrt{xy}}{\sqrt{z}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xy+yz+xz}{\sqrt{xyz}}\)
\(\Leftrightarrow \text{VT}\geq \sqrt{x}+\sqrt{y}+\sqrt{z}+\frac{xyz}{\sqrt{xyz}}=\sqrt{x}+\sqrt{y}+\sqrt{z}+\sqrt{xyz}=\text{VP}\)
Do đó ta có đpcm.
Dấu bằng xảy ra khi \(x=y=z=3\)
\(\sum\frac{x}{x+\sqrt{3x+yz}}=\sum\frac{x}{x+\sqrt{x\left(x+y+z\right)+yz}}=\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\)
Sử dụng BĐT Cauchy-Schwarz, ta có
\(\sum\frac{x}{x+\sqrt{\left(x+y\right)\left(x+z\right)}}\le\sum\frac{x}{x+\sqrt{\left(\sqrt{xy}+\sqrt{xz}\right)^2}}\)
\(=\sum\frac{x}{x+\sqrt{xy}+\sqrt{xz}}=\sum\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
Ta có :VT-VP=
\(\left(\dfrac{x}{\sqrt{x}+\sqrt{y}}-\dfrac{y}{\sqrt{x}+\sqrt{y}}\right)+\left(\dfrac{y}{\sqrt{y}+\sqrt{z}}-\dfrac{z}{\sqrt{y}+\sqrt{z}}\right)+\left(\dfrac{z}{\sqrt{z}+\sqrt{x}}-\dfrac{x}{\sqrt{z}+\sqrt{x}}\right)\)\(=\dfrac{x-y}{\sqrt{x}+\sqrt{y}}+\dfrac{y-z}{\sqrt{y}-\sqrt{z}}+\dfrac{z-x}{\sqrt{x}+\sqrt{z}}\)
\(=\dfrac{\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\sqrt{x}+\sqrt{y}}+\dfrac{\left(\sqrt{y}-\sqrt{z}\right)\left(\sqrt{y}+\sqrt{z}\right)}{\sqrt{y}+\sqrt{z}}+\dfrac{\left(\sqrt{z}-\sqrt{x}\right)\left(\sqrt{z}+\sqrt{x}\right)}{\sqrt{x}+\sqrt{x}}\)\(=\left(\sqrt{x}-\sqrt{y}\right)+\left(\sqrt{y}-\sqrt{z}\right)+\left(\sqrt{z}-\sqrt{x}\right)=0\)
\(\Rightarrow VT=VP\)
Vậy ...