Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bg
Ta có: A = \(\frac{2012}{9-x}\) (x \(\inℤ\); x \(\ne\)9) (x = 9 thì mẫu = 0, vô lý)
Để A lớn nhất thì 9 - x nhỏ nhất và 9 - x > 0
=> 9 - x = 1
=> x = 9 - 1
=> x = 8
=> A = \(\frac{2012}{9-x}=\frac{2012}{1}=2012\)
Vậy A đạt GTLN khi A = 2012 với x = 8
\(\left|2x+2,5\right|+\left|2x-3\right|\)
\(=\left|2x+2,5\right|+\left|3-2x\right|\)
Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:
\(\left|2x+2,5\right|+\left|3-2x\right|\ge\left|2x+2,5+3-2x\right|=5,5\)
Dấu "=" xảy ra khi và chỉ khi:
\(\left\{{}\begin{matrix}2x+2,5\ge0\\3-2x\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\ge-1,25\\x\le1,5\end{matrix}\right.\Rightarrow-1,25\le x\le1,5\)
Vậy...........
Chúc bạn học tốt!!!
Một tập A được gọi là đếm được nếu nó cùng lực lượng với N, tức là có một song ánh đi từ N đến A.
Từ đây ta đi đến việc giải quyết bài toán. Xét tương ứng f:N------->Z cho bởi qui tắc với x chẵn thì f(x)=x/2, với x lẻ thì f(x)=(-1-x)/2. Rõ ràng f là ánh xạ. Với x1,x2 thuộc N sao cho f(x1)=f(x2); nếu x1 chẵn thì f(x1)=x1/2>=0,suy ra f(x2)>=0,do đó x2 chẵn, suy ra f(x2)=x2/2, suy ra x1=x2; nếu x1 lẻ thì f(x1)=(-1-x1)/2<0,suy ra f(x2)<0,do đó x2 lẻ,suy ra f(x2)=(-1-x2)/2, suy ra x1=x2; vậy f là đơn ánh. Với y thuộc Z tùy ý; nếu y>=0 thì chọn x=2y là số chẵn và khi đó f(x)=2y/2=y; nếu y<0 thì chọn x=-2y-1 là số lẻ và khi đó f(x)=(-1-(-2y-1))/2=y; vậy f là toàn ánh. Suy ra f là song ánh