\(P= \frac{x^2+1}{2}\) đặt giá trị nhỏ nhất

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 4 2018

\(P=\dfrac{x^2}{2}+\dfrac{1}{2}\)

\(x^2\ge0\Rightarrow\dfrac{x^2}{2}\ge0\Leftrightarrow P\ge\dfrac{1}{2}\)

12 tháng 3 2019

Help me!!!

16 tháng 6 2016

A, x2+3x+7 = x2+2.x.3/2 +(3/2)2+19/4 = (x+3/2)2 + 19/4 >=19/4

B, = (x2-7x+10)(x2-7x-10) = (x2-7x)2 - 100 >= -100

C, = 5x2+5 >=5

17 tháng 6 2016

Bạn Nguyễn Anh Thọ có thể trình bày câu C rõ hơn không?

21 tháng 1 2020

\(A=2x^2-6x-\sqrt{7}\)

\(=2\left(x^2-3x-\sqrt{\frac{7}{2}}\right)\)

\(=2\left(x^2-3x+\frac{9}{4}-\frac{9+2\sqrt{7}}{4}\right)\)

\(=2\left[\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{4}\right]\)

\(=2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\)

Vì \(\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2\ge0\forall x\)

\(\Rightarrow2\left(x-\frac{3}{2}\right)^2-\frac{9+2\sqrt{7}}{2}\ge-\frac{9+2\sqrt{7}}{2}\)

Vậy \(Min_A=\frac{-9+2\sqrt{7}}{2}\Leftrightarrow x=\frac{3}{2}\)

30 tháng 4 2016

pn viết rõ hơn đj